Displaying publications 1 - 20 of 396 in total

Abstract:
Sort:
  1. Abdollahi Y, Sabbaghi S, Abouzari-Lotf E, Jahangirian H, Sairi NA
    Water Sci Technol, 2018 Mar;77(5-6):1493-1504.
    PMID: 29595152 DOI: 10.2166/wst.2018.017
    The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.
    Matched MeSH terms: Oxides/chemistry
  2. Ali G, Nisar J, Iqbal M, Shah A, Abbas M, Shah MR, et al.
    Waste Manag Res, 2019 Aug 13.
    PMID: 31405341 DOI: 10.1177/0734242X19865339
    Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
    Matched MeSH terms: Oxides
  3. Nasution A, Syed Sulaiman SA, Shafie AA
    Value Health Reg Issues, 2013 May;2(1):43-47.
    PMID: 29702851 DOI: 10.1016/j.vhri.2013.02.009
    OBJECTIVES: This study evaluated the clinical and economic impacts of clinical pharmacy education (CPE) on infection management among patients with chronic kidney disease (CKD) stages 4 and 5 in Haji Adam Malik Hospital, Indonesia.

    METHODS: A quasi-experimental economic evaluation comparing CPE impact on 6-month CKD mortality was conducted on the basis of payer perspective. The experimental group (n = 63) received care by health care providers who were given CPE on drug-related problems and dose adjustment. The control group (n = 80) was based on the historical cohort of patients who received care before the CPE. Measure of clinical outcome applied in this study was number of lives saved/100 patients treated. Cost-effectiveness ratios for CKD stages 4 and 5 patients without CPE and with CPE and incremental cost-effectiveness ratios (ICERs) for CKD stages 4 and 5 patients were analyzed.

    RESULTS: Lives saved (%) in the treatment of CKD without CPE: CKD stage 4, 78.57; CKD stage 5, 57.58. Lives saved (%) in the treatment of CKD with CPE: CKD stage 4, 88.89; CKD stage 5, 65.45. Cost-effectiveness ratios for stage 4 with and without CPEs were Rp3,348,733.27 and Rp3,519,931.009, respectively. Cost-effectiveness ratios for stage 5 with and without CPEs were Rp7,137,874.93 and Rp7,871,822.27, respectively. ICERs were Rp2,045,341.22 for CKD stage 4 and Rp1,767,585.60 for CKD stage 5.

    CONCLUSIONS: Treatment of CKD stages 4 and 5 with CPE was more effective and cost-effective compared with treatment of CKD stages 4 and 5 without CPE. The ICERs indicated that extra costs were required to increase life saved in both stages.

    Matched MeSH terms: Cyclic N-Oxides
  4. Iqbal MZ, Khan A, Numan A, Haider SS, Iqbal J
    Ultrason Sonochem, 2019 Dec;59:104736.
    PMID: 31473424 DOI: 10.1016/j.ultsonch.2019.104736
    An upsurge in sustainable energy demands has ultimately made supercapattery one of the important choice for energy storage, owing to highly advantageous energy density and long life span. In this work, novel strontium based mixed phased nanostructures were synthesized by using probe sonicator with sonication power 500 W at frequency of 20 kHz. The synthesized material was subsequently calcined at different temperature ranging from 200 to 800 °C. Structural and morphological analysis of the synthesized materials reveals the formation of mixed particle and rod like nanostructures with multiple crystal phases of strontium oxides and carbonates. Crystallinity, grain size and morphology of grown nanomaterials significantly improved with the increase of calcination temperature due to sufficient particle growth and low agglomeration. The electrochemical performance analysis confirms the redox activeness of the Sr-based electrode materials. Material calcined at 600 °C show high specific capacitance of 350 F g-1 and specific capacity of 175 C g-1 at current density of 0.3 A g-1 due to less particle agglomeration, good charge transfer and more contribution of electrochemical active sites for redox reactions. In addition, the developed supercapattery of Sr-based nanomaterials//activated carbon demonstrated high performance with maximum energy density of 21.8 Wh kg-1 and an excellent power density of 2400 W kg-1 for the lower and higher current densities. Furthermore, the supercapattery retain 87% of its capacity after continuous 3000 charge/discharge cycles. The device characteristics were further investigated by analyzing the capacitive and diffusion controlled contributions. The versatile strategy of developing mixed phased nanomaterials pave the way to synthesize other transition metal based nanomaterials with superior electrochemical performance for hybrid energy storage devices.
    Matched MeSH terms: Oxides
  5. Rohaizu R, Wanrosli WD
    Ultrason Sonochem, 2017 01;34:631-639.
    PMID: 27773290 DOI: 10.1016/j.ultsonch.2016.06.040
    Highly stable and dispersible nanocrystalline cellulose (NCC) was successfully isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC), with yields of 93% via a sono-assisted TEMPO-oxidation and a subsequent sonication process. The sono-assisted treatment has a remarkable effect, resulting in an increase of more than 100% in the carboxylate content and a significant increase of approximately 39% in yield compared with the non-assisted process. TEM images reveal the OPEFB-NCC to have rod-like crystalline morphology with an average length and width of 122 and 6nm, respectively. FTIR and solid-state 13C-NMR analyses suggest that oxidation of cellulose chain hydroxyl groups occurs at C6. XRD analysis shows that OPEFB-NCC consists primarily of a crystalline cellulose I structure. Both XRD and 13C-NMR indicate that the OPEFB-NCC has a lower crystallinity than the OPEFB-MCC starting material. Thermogravimetric analysis illustrates that OPEFB-NCC is less thermally stable than OPEFB-MCC but has a char content of 46% compared with 7% for the latter, which signifies that the carboxylate functionality acts as a flame retardant.
    Matched MeSH terms: Cyclic N-Oxides/chemistry*
  6. Afreen S, Muthoosamy K, Manickam S
    Ultrason Sonochem, 2019 Mar;51:451-461.
    PMID: 30224290 DOI: 10.1016/j.ultsonch.2018.07.015
    The main objective of this review is to derive the salient features of previously developed ultrasound-assisted methods for hydroxylating graphene and Buckminsterfullerene (C60). The pros and cons associated to ultrasound-assisted synthesis of hydroxy-carbon nanomaterials in designing the strategical methods for the industrial bulk production are also discussed. A guideline on the statistical methods has also been considered to further provide the scopes towards the application of the previously reported methods. Irrespective of many useful methods that have been developed in order to functionalize C60 and graphene by diverse oxygenated functional groups e.g. epoxide, hydroxyl, carboxyl as well as metal/metal oxide via a combination of organic chemistry and sonochemistry, there is no report dealing exclusively on the application of ultrasonic cavitation particularly to synthesising polyhydroxylated carbon nanomaterials. On this context, this review emphasizes in investigating the critical aspects of sono-nanochemistry and the statistical approaches to optimize the variables in the sonochemical process towards a large-scale synthesis of polyhydroxylated graphene and C60.
    Matched MeSH terms: Oxides
  7. Geetha Bai R, Muthoosamy K, Shipton FN, Manickam S
    Ultrason Sonochem, 2017 May;36:129-138.
    PMID: 28069192 DOI: 10.1016/j.ultsonch.2016.11.021
    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.
    Matched MeSH terms: Oxides/chemistry*
  8. MOHAMAD HANIF AKMAL HUSSIN, WAN RAFIZAH WAN ABDULLAH, MOHAMAD AWANG
    MyJurnal
    Semiconductor oxides such as titanium dioxide (TiO2) and zinc oxide (ZnO) are used as the photocatalyst for removing contaminants. In addition, TiO2 and ZnO nanoparticles in the suspension form makes it difficult to be recovered and recycled. This study was conducted to investigate the efficiency of immobilizing TiO2 and ZnO nanoparticles in epoxy beads. The immobilization process using different ratios of photocatalysts TiO2/ZnO (1:0, 3:1, 1:1, 1:3 and 0:1) fixed on epoxy material. These epoxy beads were used for dye removal in photocatalysis using methylene blue (MB) solution at a concentration of 10mg/L. Besides, epoxy beads also characterized using scanning electron microscope (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the highly recommended epoxy bead is 3:1 ratio of TiO2/ZnO because it has good performance in dye degradation that proved from reducing concentration of MB to 2.4mg/L (76%). However, TiO2/ZnO characterization of 3:1 by SEM show on the surface the particle are found to be spherical in shape which is relatively high efficiency for the degradation, ATR-FTIR pattern in broad band 4000 cm-1 - 400cm-1 which correspond to hydroxyl stretching to be adsorbed at peak (474.49 cm-1 - 3722.61cm-1) respectively to the optimum for the degradation and TGA rate of change are 5mg to 2.5mg that residue (49.78%) due to decomposition or oxidation from mass loss. These findings are very effective and economical technique to be cost saving and highly efficient photocatalyst.
    Matched MeSH terms: Oxides
  9. NUR FAZLEEN SYUHADA ROSTAM, NOR AMIRA IZATI NOR AZMAN, NURUL FAZIHA IBRAHIM, SUHAIZAN LOB
    MyJurnal
    Tomatoes have a short shelf life thus they pose a big challenge for growers to maintain the quality of tomatoes to increase customer acceptance. In this study, fungi associated with tomato disease symptoms were isolated and the potential of kaffir lime aqueous extract was evaluated in maintaining post-harvest quality of tomatoes. For this purpose, healthy tomatoes were dipped in 10% aqueous kaffir lime extract before evaluating the post-harvest parameters namely weight loss and firmness. A fungus namely Rhizophus stolonifer was isolated from the symptomatic tomatoes. Subsequently, it was confirmed to be pathogenic on healthy tomato fruits with 100% disease severity. Application of aqueous kaffir lime extract showed that tomato fruits dipped in 10% aqueous kaffir lime extract recorded higher weight loss and higher firmness as compared to untreated tomato fruits. The results showed that treatment with this concentration of plant extract did not help to reduce the weight loss, but it retained the firmness of the tomato fruits stored at room temperature at 27+2oC. Higher transpiration process would lead to shrinkage, weight loss, changes in texture and appearance of the fruits. Therefore, this study suggested an increased concentration of aqueous kaffir lime extract as a treatment agent in order to have a better effect in maintaining the quality of tomato fruits.
    Matched MeSH terms: Oxides
  10. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Nitrogen Oxides
  11. Peck Yen T, Rohasliney H
    Trop Life Sci Res, 2013 Aug;24(1):19-34.
    PMID: 24575239 MyJurnal
    This paper aimed to describe the effects of sand mining on the Kelantan River with respect to physical and chemical parameter analyses. Three replicates of water samples were collected from five stations along the Kelantan River (November 2010 until February 2011). The physical parameters included water temperature, water conductivity, dissolved oxygen (DO), pH, total dissolved solids (TDS), total suspended solids (TSS) and turbidity, whereas the chemical parameters included the concentration of nitrogen nutrients such as ammonia, nitrate and nitrite. The Kelantan River case study revealed that TSS, turbidity and nitrate contents exceed the Malaysian Interim National Water Quality Standard (INWQS) range and are significantly different between Station 1 (KK) and Station 3 (TM). Station 1 has the largest variation of TDS, TSS, turbidity and nitrogen nutrients because of sand mining and upstream logging activities. The extremely high content of TSS and the turbidity have caused poor and stressful conditions for the aquatic life in the Kelantan River.
    Matched MeSH terms: Nitrogen Oxides
  12. Fatema K, Wan Maznah WO, Isa MM
    Trop Life Sci Res, 2014 Dec;25(2):1-19.
    PMID: 27073596 MyJurnal
    In this study, factor analysis (FA) was applied to extract the hidden factors responsible for water quality variations during both wet and dry seasons. Water samples were collected from six sampling stations (St. 1 Lalang River, St. 2 Semeling River, St. 3 Jagung River, St. 4 Teluk Wang River, St. 5 Gelam River and St. 6 Derhaka River) in the Merbok estuary, Malaysia from January to December 2011; the samples were further analysed in the laboratory. Correlation analysis of the data sets showed strong correlations between the parameters. Nutrients such as nitrate (NO3 (-)), nitrite (NO2 (-)), ammonia (NH3) and phosphate (PO4 (3-)) were determined to be critical indicators of water quality throughout the year. Influential water quality parameters during the wet season were conductivity, salinity, biochemical oxygen demand (BOD), dissolved oxygen (DO) and chlorophyll a (Chla), whereas total suspended solid (TSS) and pH were critical water quality indicators during the dry season. The Kruskal-Wallis H test showed that water quality parameters were significantly different among the sampling months and stations (p<0.05), and Mann-Whitney U tests further revealed that the significantly different parameters were temperature, pH, DO, TSS, NO2 (-) and BOD (p<0.01), whereas salinity, conductivity, NO3 (-), PO4 (3-), NH3 and Chla were not significantly different (p>0.05). Water quality parameters in the estuary varied on both temporal and spatial scales and these results may serve as baseline information for estuary management, specifically for the Merbok estuary.
    Matched MeSH terms: Nitrogen Oxides
  13. Asma Liyana Shaari, Misni Surif, Faazaz Abd. Latiff, Wan Maznah Wan Omar, Mohd Noor Ahmad
    Trop Life Sci Res, 2011;22(1):-.
    MyJurnal
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to
    fluctuate widely with light intensity ranging between 182.23–1278 µmol photon m–2s–1, temperature between 29.56ºC –31.59ºC, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2– -N), nitrate (NO3– -N), and orthophosphate (PO43– -P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p
    Matched MeSH terms: Nitrogen Oxides
  14. Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J
    Toxins (Basel), 2018 09 06;10(9).
    PMID: 30200553 DOI: 10.3390/toxins10090361
    A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
    Matched MeSH terms: Oxides/chemistry*
  15. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, et al.
    Ticks Tick Borne Dis, 2017 10;8(6):821-826.
    PMID: 28865955 DOI: 10.1016/j.ttbdis.2017.08.004
    Ticks serve as vectors of a wide range of infectious agents deleterious to humans and animals. Tick bite prevention is based to a large extent on the use of chemical repellents and acaricides. However, development of resistance in targeted ticks, environmental pollution, and contamination of livestock meat and milk are major concerns. Recently, metal, metal oxide and carbon nanoparticles, particularly those obtained through green fabrication routes, were found to be highly effective against a wide array of arthropod pests and vectors. We summarize current knowledge on the toxicity of nanoparticles against tick vectors of medical and veterinary importance. We also discuss the toxicity of products from botanical- and bacterial-based as well as classic chemical nanosynthesis routes, showing differences in bioactivity against ticks based on the products used for the fabrication of nanoparticles. Further research is needed, to validate the efficacy of nanoparticle-based acaricides in the field and clarify mechanisms of action of nanoparticles against ticks. From a technical point of view, the literature analyzed here showed little standardization of size and weight of tested ticks, a lack of uniform methods to assess toxicity and concerns related to data analysis. Finally, an important challenge for future research is the need for ecotoxicology studies to evaluate potential negative effects on non-target organisms and site contamination arising from nanoparticle-based treatments in close proximity of livestock and farmers.
    Matched MeSH terms: Oxides/pharmacology
  16. Hussin H, Soin N, Bukhori MF, Hatta SW, Wahab YA
    ScientificWorldJournal, 2014;2014:490829.
    PMID: 25221784 DOI: 10.1155/2014/490829
    We present a simulation study on negative bias temperature instability (NBTI) induced hole trapping in E' center defects, which leads to depassivation of interface trap precursor in different geometrical structures of high-k PMOSFET gate stacks using the two-stage NBTI model. The resulting degradation is characterized based on the time evolution of the interface and hole trap densities, as well as the resulting threshold voltage shift. By varying the physical thicknesses of the interface silicon dioxide (SiO2) and hafnium oxide (HfO2) layers, we investigate how the variation in thickness affects hole trapping/detrapping at different stress temperatures. The results suggest that the degradations are highly dependent on the physical gate stack parameters for a given stress voltage and temperature. The degradation is more pronounced by 5% when the thicknesses of HfO2 are increased but is reduced by 11% when the SiO2 interface layer thickness is increased during lower stress voltage. However, at higher stress voltage, greater degradation is observed for a thicker SiO2 interface layer. In addition, the existence of different stress temperatures at which the degradation behavior differs implies that the hole trapping/detrapping event is thermally activated.
    Matched MeSH terms: Oxides
  17. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:692307.
    PMID: 25054183 DOI: 10.1155/2014/692307
    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.
    Matched MeSH terms: Oxides/chemistry
  18. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
    Matched MeSH terms: Oxides/chemistry*
  19. Nath RK, Zain MF, Kadhum AA
    ScientificWorldJournal, 2013;2013:686497.
    PMID: 24376384 DOI: 10.1155/2013/686497
    The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
    Matched MeSH terms: Oxides/radiation effects; Oxides/chemistry*
  20. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Oxides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links