Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: PPAR gamma/genetics
  2. Yogarajah T, Bee YT, Noordin R, Yin KB
    Mol Med Rep, 2015 Jan;11(1):515-20.
    PMID: 25324014 DOI: 10.3892/mmr.2014.2686
    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.
    Matched MeSH terms: PPAR gamma/genetics*
  3. Yaacob NS, Darus HM, Norazmi MN
    Exp. Toxicol. Pathol., 2008 Sep;60(6):505-12.
    PMID: 18579355 DOI: 10.1016/j.etp.2008.05.006
    Studies have shown that ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) can induce differentiation and inhibit proliferation of several cancer cells. The present study was performed to investigate the effects of the PPARgamma ligand, ciglitazone, and the involvement of PPARgamma in modulating the growth of human colorectal cancer cells. Lactate dehydrogenase release assay showed that ciglitazone potently inhibited HT-29 (well-differentiated) and COLO-205 (poorly differentiated) colorectal adenocarcinoma cell growth. Measurement of apoptosis by flow cytometry using a fluorescein-conjugated monoclonal antibody against cytokeratin 18 revealed a high induction of apoptosis by ciglitazone in a time-dependent fashion. The expression of PPARgamma1 but not PPARgamma2 mRNA was significantly downregulated as measured by real-time quantitative PCR, and the PPARgamma protein levels were decreased as determined by Western blot analysis. We conclude that ciglitazone treatment suppressed colon cancer cell growth via induction of apoptosis. However, the anticancer effects of ciglitazone may not depend solely on PPARgamma activation.
    Matched MeSH terms: PPAR gamma/genetics*
  4. Yaacob NS, Kaderi MA, Norazmi MN
    J Clin Immunol, 2009 Sep;29(5):595-602.
    PMID: 19472040 DOI: 10.1007/s10875-009-9300-1
    BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) have been implicated in immune regulation. We determined the transcriptional expression of the three isoforms, PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages, CD4- and CD8-positive lymphocytes in non-obese diabetic (NOD) mice at 5 and 10 weeks of age as well as at diabetic stage.

    RESULTS: Compared to the non-obese diabetic resistant (NOR) mice, the peritoneal macrophages of NOD mice expressed increased levels of PPARalpha but reduced levels of PPARgamma2, while PPARgamma1 expression was unchanged in all age groups. CD4-positive lymphocytes expressed low levels of PPARalpha in diabetic NOD mice and greatly reduced expression of PPARgamma2 in all age groups. Unlike peritoneal macrophages and CD4-positive cells, the CD8-positive cells expressed low levels of PPARgamma1 in diabetic NOD mice but no difference in PPARalpha and PPARgamma2 expression was observed compared to NOR mice.

    CONCLUSION: The current findings may suggest an important regulatory role of PPARs in the pathogenesis of autoimmune diabetes.

    Matched MeSH terms: PPAR gamma/genetics
  5. Tham YY, Choo QC, Muhammad TST, Chew CH
    Mol Biol Rep, 2020 Dec;47(12):9595-9607.
    PMID: 33259010 DOI: 10.1007/s11033-020-06019-9
    Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.
    Matched MeSH terms: PPAR gamma/genetics
  6. Sharifah NA, Zakaria Z, Chia WK
    Methods Mol Biol, 2013;952:187-96.
    PMID: 23100233 DOI: 10.1007/978-1-62703-155-4_13
    Fluorescence in situ hybridization (FISH) is increasingly gaining importance in clinical diagnostics settings. Due to the ability of the technique to detect chromosomal abnormalities in samples with low cellularity or containing a mixed population of cells even at a single-cell level, it has become more popular in cancer research and diagnosis. Here, we describe the FISH technique for detection of PAX8-PPARγ translocation in follicular thyroid neoplasms, and the optimal protocol for the detection of this fusion gene using in archival formalin-fixed paraffin-embedded (FFPE) thyroid tissue sections.
    Matched MeSH terms: PPAR gamma/genetics
  7. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: PPAR gamma/genetics
  8. Norazmi MN, Mohamed R, Nurul AA, Yaacob NS
    Clin. Dev. Immunol., 2012;2012:849195.
    PMID: 22548115 DOI: 10.1155/2012/849195
    Given their roles in immune regulation, the expression of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) 1 and 2 isoforms was investigated in human naïve (CD45RA+) and memory (CD45RO+) CD4+ T cells. Stimulation of both types of cells via the CD3/CD28 pathway resulted in high expression of both PPARγ receptors as measured by real-time PCR. Treatment with the PPARγ agonist, ciglitazone, increased PPARγ1 expression but decreased PPARγ2 expression in stimulated naïve and memory cells. Furthermore, when present, the magnitude of both PPARγ receptors expression was lower in naïve cells, perhaps suggesting a lower regulatory control of these cells. Similar profiles of selected proinflammatory cytokines were expressed by the two cell types following stimulation. The induction of PPARγ1 and suppression of PPARγ2 expressions in naïve and memory CD4+ T cells in the presence of ciglitazone suggest that the PPARγ subtypes may have different roles in the regulation of T-cell function.
    Matched MeSH terms: PPAR gamma/genetics
  9. Li X, Hou Q, Yuan W, Zhan X, Yuan H
    J Orthop Surg Res, 2023 Dec 01;18(1):916.
    PMID: 38041147 DOI: 10.1186/s13018-023-04412-1
    BACKGROUND: Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD.

    METHODS: In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling.

    RESULTS: PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P 

    Matched MeSH terms: PPAR gamma/genetics
  10. Ishaka A, Imam MU, Ismail M
    J Oleo Sci, 2020;69(10):1287-1295.
    PMID: 33028753 DOI: 10.5650/jos.ess20098
    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects including lipid-lowering that have been extensively studied. However, its bioavailability is low. To investigate the effect of nanoemulsified rice bran wax policosanol (NPOL) on plasma homocysteine, heart and liver histology in hyperlipidemic rats, high-fat diet containing 2.5% cholesterol was used to induce hyperlipidemia in Sprague Dawley rats. The hyperlipidemic rats were treated with NPOL and rice bran wax policosanol (POL) in comparison with normal diet (ND), high-cholesterol diet (HCD) and simvastatin-treated rats. Plasma homocysteine, heart and liver histology, and hepatic mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) were evaluated. The NPOL group, similar to the simvastatin group, showed reduced plasma homocysteine, preserved heart and liver histology, and down-regulated hepatic PPARG mRNA in comparison to the control group, and was better than the POL group. The results suggest that the modest effect of NPOL on homocysteine and preservation of heart and liver histology could be through the regulation of PPARG expression on a background of increased assimilation of rice bran wax policosanol.
    Matched MeSH terms: PPAR gamma/genetics*
  11. Imam MU, Ismail M, Ithnin H, Tubesha Z, Omar AR
    Nutrients, 2013 Feb;5(2):468-77.
    PMID: 23389305 DOI: 10.3390/nu5020468
    Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR's antiobesity effects. These potentials are worth studying further.
    Matched MeSH terms: PPAR gamma/genetics*
  12. Hossain MM, Mukheem A, Kamarul T
    Life Sci, 2015 Aug 15;135:55-67.
    PMID: 25818192 DOI: 10.1016/j.lfs.2015.03.010
    Hypoadiponectinemia is characterized by low plasma adiponectin levels that can be caused by genetic factors, such as single nucleotide polymorphisms (SNPs) and mutations in the adiponectin gene or by visceral fat deposition/obesity. Reports have suggested that hypoadiponectinemia is associated with dyslipidemia, hypertension, hyperuricemia, metabolic syndrome, atherosclerosis, type 2 diabetes mellitus and various cardiovascular diseases. Previous studies have highlighted several potential strategies to up-regulate adiponectin secretion and function, including visceral fat reduction through diet therapy and exercise, administration of exogenous adiponectin, treatment with peroxisome proliferator-activating receptor gamma (PPARγ) agonists (e.g., thiazolidinediones (TZDs)) and ligands (e.g., bezafibrate and fenofibrate) or the blocking of the renin-angiotensin system. Likewise, the up-regulation of the expression and stimulation of adiponectin receptors by using adiponectin receptor agonists would be an effective method to treat obesity-related conditions. Notably, adiponectin is an abundantly expressed bioactive protein that also exhibits a wide spectrum of biological properties, such as insulin-sensitizing, anti-diabetic, anti-inflammatory and anti-atherosclerotic activities. Although targeting adiponectin and its receptors has been useful for treating diabetes and other metabolic-related diseases in experimental studies, current drug development based on adiponectin/adiponectin receptors for clinical applications is scarce, and there is a lack of available clinical trial data. This comprehensive review discusses the strategies that are presently being pursued to harness the potential of adiponectin up-regulation. In addition, we examined the current status of drug development and its potential for clinical applications.
    Matched MeSH terms: PPAR gamma/genetics
  13. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: PPAR gamma/genetics
  14. Haerian BS, Sha'ari HM, Fong CY, Tan HJ, Wong SW, Ong LC, et al.
    J Neuroimmunol, 2015 Jan 15;278:137-43.
    PMID: 25595263 DOI: 10.1016/j.jneuroim.2014.12.016
    Neuroinflammation can damage the brain and plays a critical role in the pathophysiology of epilepsy. Tissue inhibitor of metalloproteinase 4 (TIMP4) is an inflammation-induced apoptosis and matrix turnover factor involved in several neuronal disorders and inflammatory diseases. Evidence has shown linkage disequilibrium between rs3755724 (-55C/T) of this gene with synapsin 2 (SYN2) rs3773364 and peroxisome proliferator-activated G receptor (PPARG) rs2920502 loci, which contribute to epilepsy in Caucasians. The aim of this study was to examine the association of these loci alone or their haplotypes with the risk of epilepsy in the Malaysian population. Genomic DNA of 1241 Malaysian Chinese, Indian, and Malay subjects (670 patients with epilepsy and 571 healthy individuals) was genotyped for the candidate loci by using the Sequenom MassArray method. Allele and genotype association of rs3755724 with susceptibility to epilepsy was significant in the Malaysian Chinese with focal epilepsy under codominant and dominant models (C vs. T: 1.5 (1.1-2.0), p=0.02; CT vs. TT: 1.8 (1.2-2.8), p=0.007 and 1.8 (1.2-2.7), p=0.006, respectively). The T allele and the TT genotype were more common in patients than in controls. No significant association was found between rs2920502 and rs3773364-rs3755724-rs2920502 haplotypes for susceptibility to epilepsy in each ethnicity. This study provides evidence that the promoter TIMP4 rs3755724 is a new focal epilepsy susceptibility variant that is plausibly involved in inflammation-induced seizures in Malaysian Chinese.
    Matched MeSH terms: PPAR gamma/genetics
  15. Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J
    Mol Biol Rep, 2021 Jan;48(1):743-761.
    PMID: 33275195 DOI: 10.1007/s11033-020-06036-8
    Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
    Matched MeSH terms: PPAR gamma/genetics
  16. Ebrahimi M, Rajion MA, Goh YM
    Nutrients, 2014 Sep;6(9):3913-28.
    PMID: 25255382 DOI: 10.3390/nu6093913
    Alteration of the lipid content and fatty acid (FA) composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST) muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA) and α-linolenic acid (LNA) for 100 days. Inclusion of flaxseed oil increased (p < 0.05) the α-linolenic acid (C18:3n-3) concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05) decreased the arachidonic acid (C20:4n-6) and conjugated linolenic acid (CLA) c-9 t-11 content in the ST muscle. There was a significant (p < 0.05) upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD) gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression.
    Matched MeSH terms: PPAR gamma/genetics
  17. Ebrahimi M, Rajion MA, Jafari S, Faseleh Jahromi M, Oskoueian E, Qurni Sazili A, et al.
    PLoS One, 2018;13(8):e0188369.
    PMID: 30067750 DOI: 10.1371/journal.pone.0188369
    The present study was conducted to investigate the effects of altering the ratio of n-6 to n-3 fatty acids in the diet on meat quality, fatty acid composition of muscle, and expression of lipogenic genes in the muscle of Boer goats. A total of twenty-one Boer goats (5 months old; 31.66±1.07 kg body weight) were randomly assigned to three dietary treatments with n-6:n-3 fatty acid ratios of 2.27:1 (LR), 5.01:1 (MR) and 10.38:1 (HR), fed at 3.7% of body weight. After 100 days of feeding, all goats were slaughtered and the longissimus dorsi muscle was sampled for analysis of fatty acids and gene expression. The dietary treatments did not affect (P>0.05) the carcass traits, and meat quality of growing goats. The concentrations of cis-9,trans-11 conjugated linoleic acid, trans vaccenic acid, polyunsaturated fatty acids, and unsaturated/saturated fatty acid ratios linearly increased (P<0.01) with decreasing dietary n-6:n-3 fatty acid ratios, especially for LR in the longissimus dorsi muscle of goats. In contrast, the mRNA expression level of the PPARα and PPARγ was down-regulated and stearoyl-CoA desaturase up-regulated in the longissimus dorsi of growing goats with increasing dietary n-6:n-3 fatty acid ratios (P<0.01). In conclusion, the results obtained indicate that the optimal n-6:n-3 fatty acid ratio of 2.27:1 exerted beneficial effects on meat fatty acid profiles, leading towards an enrichment in n-3 polyunsaturated fatty acids and conjugated linoleic acid in goat intramuscular fat.
    Matched MeSH terms: PPAR gamma/genetics
  18. Chia WK, Sharifah NA, Reena RM, Zubaidah Z, Clarence-Ko CH, Rohaizak M, et al.
    Cancer Genet. Cytogenet., 2010 Jan 1;196(1):7-13.
    PMID: 19963130 DOI: 10.1016/j.cancergencyto.2009.08.001
    At the present time, the differentiation between follicular thyroid carcinoma (FTC) and adenoma can be made only postoperatively and is based on the presence of capsular or vascular invasion. The ability to differentiate preoperatively between the malignant and benign forms of follicular thyroid tumors assumes greater importance in any clinical setting. The PAX8-PPARG translocation has been reported to occur in the majority of FTC. In this study, a group of 60 follicular thyroid neoplasms [18 FTC, 1 Hurthle cell carcinoma (HCC), 24 follicular thyroid adenomas (FTA), 5 Hurthle cell adenomas (HCA), and 12 follicular variants of papillary thyroid carcinomas (FV-PTC)] were analyzed to determine the prevalence of the PAX8-PPARG translocation by fluorescence in situ hybridization. The PAX8-PPARG translocation was detected in 2/18 FTC (11.1%). In addition, 2/18 (11.1%) FTC and 1/5 (20%) HCA showed 3p25 aneusomy only. The frequency of the translocation detected in the study was lower compared to the earlier studies conducted in Western countries. This might be attributed to the ethnic background and geographic location. Detection of either the PAX8-PPARG translocation or the 3p25 aneusomy in FTC indicates that these are independent genetic events. It is hereby concluded that 3p25 aneusomy or PAX8-PPARG translocation may play an important role in the molecular pathogenesis of follicular thyroid tumors.
    Matched MeSH terms: PPAR gamma/genetics*
  19. Boon Yin K, Najimudin N, Muhammad TS
    Biochem Biophys Res Commun, 2008 Jun 27;371(2):177-9.
    PMID: 18413145 DOI: 10.1016/j.bbrc.2008.04.013
    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPARgamma is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPARgamma coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPARgamma studying, although mice and rat are frequently being used. The PPARgamma is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte size and/or number through a complex interplay process called adipogenesis. However, the role of PPARgamma in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.
    Matched MeSH terms: PPAR gamma/genetics
  20. Beh JE, Khoo LT, Latip J, Abdullah MP, Alitheen NB, Adam Z, et al.
    J Ethnopharmacol, 2013 Oct 28;150(1):339-52.
    PMID: 24029250 DOI: 10.1016/j.jep.2013.09.001
    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes.
    Matched MeSH terms: PPAR gamma/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links