Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Yong NK, Awang N
    Environ Monit Assess, 2019 Jan 11;191(2):64.
    PMID: 30635772 DOI: 10.1007/s10661-019-7209-6
    This study presents the use of a wavelet-based time series model to forecast the daily average particulate matter with an aerodynamic diameter of less than 10 μm (PM10) in Peninsular Malaysia. The highlight of this study is the use of a discrete wavelet transform (DWT) in order to improve the forecast accuracy. The DWT was applied to convert the highly variable PM10 series into more stable approximations and details sub-series, and the ARIMA-GARCH time series models were developed for each sub-series. Two different forecast periods, one was during normal days, while the other was during haze episodes, were designed to justify the usefulness of DWT. The models' performance was evaluated by four indices, namely root mean square error, mean absolute percentage error, probability of detection and false alarm rate. The results showed that the model incorporated with DWT yielded more accurate forecasts than the conventional method without DWT for both the forecast periods, and the improvement was more prominent for the period during the haze episodes.
    Matched MeSH terms: Particulate Matter/analysis*
  2. Fulazzaky MA
    Environ Monit Assess, 2010 Sep;168(1-4):669-84.
    PMID: 19728125 DOI: 10.1007/s10661-009-1142-z
    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.
    Matched MeSH terms: Particulate Matter/analysis
  3. Li Q, Zhang K, Li R, Yang L, Yi Y, Liu Z, et al.
    Sci Total Environ, 2023 May 10;872:162071.
    PMID: 36775179 DOI: 10.1016/j.scitotenv.2023.162071
    Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.
    Matched MeSH terms: Particulate Matter/analysis
  4. Rana MM, Sulaiman N, Sivertsen B, Khan MF, Nasreen S
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17393-403.
    PMID: 27230142 DOI: 10.1007/s11356-016-6950-4
    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.
    Matched MeSH terms: Particulate Matter/analysis*
  5. Suhaimi NF, Jalaludin J, Roslan NIS
    Int J Environ Health Res, 2024 Mar;34(3):1384-1396.
    PMID: 37160687 DOI: 10.1080/09603123.2023.2211020
    Traffic-Related Air Pollution (TRAP) exposure has been connected to significant health impacts among children. A cross-sectional comparative study was conducted among school children in Malaysia to determine the relationship between their exposure to TRAP and respiratory health effects. Air monitoring was conducted in schools and residences, while the children's routines were investigated using a diary of daily activities. Respondents' background and respiratory symptoms were obtained from a validated questionnaire, while a spirometry test was performed to determine their lung function status. The distances between schools and residences from the had contributed to the higher concentration of air pollutants in this study, which had associations with the children's respiratory symptoms and lung function status. PM2.5 was the main predictor influencing the respondents' respiratory symptoms and lung function abnormalities. In conclusion, exposure of school children to a high TRAP level might increase their risk of getting respiratory symptoms and lung function reduction.
    Matched MeSH terms: Particulate Matter/analysis
  6. Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, et al.
    Front Public Health, 2022;10:851553.
    PMID: 35664109 DOI: 10.3389/fpubh.2022.851553
    Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
    Matched MeSH terms: Particulate Matter/analysis
  7. Aliyu AJ, Ismail NW
    Environ Sci Pollut Res Int, 2016 Nov;23(21):21288-21298.
    PMID: 27497851
    The relationship between environmental factors and human health has long been a concern among academic researchers. We use two indicators of environmental pollution, namely particulate matter (PM10) and carbon dioxide (CO2) to examine the effects of poor air quality on human mortality. This study explores an issue that has largely been ignored, particularly in the African literature, where the effect of air pollution on human mortality could be influenced by gender specification. We analyse a panel data from 35 African countries and our result suggests that the elevated levels of PM10 and CO2 have a significant effect on the increasing mortality rates in infants, under-five children and adults. Although the effect of poor air quality on adults is found to differ between genders, such difference is not statistically significant. We conclude that the air pollution effects, on average, are similar between genders in the African countries.
    Matched MeSH terms: Particulate Matter/analysis
  8. Suhaimi NF, Jalaludin J, Abu Bakar S
    PMID: 34360284 DOI: 10.3390/ijerph18157995
    This study aimed to investigate the association between traffic-related air pollution (TRAP) exposure and histone H3 modification among school children in high-traffic (HT) and low-traffic (LT) areas in Malaysia. Respondents' background information and personal exposure to traffic sources were obtained from questionnaires distributed to randomly selected school children. Real-time monitoring instruments were used for 6-h measurements of PM10, PM2.5, PM1, NO2, SO2, O3, CO, and total volatile organic compounds (TVOC). Meanwhile, 24-h measurements of PM2.5-bound black carbon (BC) were performed using air sampling pumps. The salivary histone H3 level was captured using an enzyme-linked immunosorbent assay (ELISA). HT schools had significantly higher PM10, PM2.5, PM1, BC, NO2, SO2, O3, CO, and TVOC than LT schools, all at p < 0.001. Children in the HT area were more likely to get higher histone H3 levels (z = -5.13). There were positive weak correlations between histone H3 level and concentrations of NO2 (r = 0.37), CO (r = 0.36), PM1 (r = 0.35), PM2.5 (r = 0.34), SO2 (r = 0.34), PM10 (r = 0.33), O3 (r = 0.33), TVOC (r = 0.25), and BC (r = 0.19). Overall, this study proposes the possible role of histone H3 modification in interpreting the effects of TRAP exposure via non-genotoxic mechanisms.
    Matched MeSH terms: Particulate Matter/analysis
  9. Sansuddin N, Ramli NA, Yahaya AS, Yusof NF, Ghazali NA, Madhoun WA
    Environ Monit Assess, 2011 Sep;180(1-4):573-88.
    PMID: 21136287 DOI: 10.1007/s10661-010-1806-8
    Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as "localized haze". General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM(10) concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM(10) concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m(3)) for PM(10) concentrations. The short-term prediction for PM(10) exceedances in 14 days was obtained using the autoregressive model.
    Matched MeSH terms: Particulate Matter/analysis*
  10. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Particulate Matter/analysis*
  11. Althuwaynee OF, Pokharel B, Aydda A, Balogun AL, Kim SW, Park HJ
    J Expo Sci Environ Epidemiol, 2021 07;31(4):709-726.
    PMID: 33159165 DOI: 10.1038/s41370-020-00271-8
    Accurate identification of distant, large, and frequent sources of emission in cities is a complex procedure due to the presence of large-sized pollutants and the existence of many land use types. This study aims to simplify and optimize the visualization mechanism of long time-series of air pollution data, particularly for urban areas, which is naturally correlated in time and spatially complicated to analyze. Also, we elaborate different sources of pollution that were hitherto undetectable using ordinary plot models by leveraging recent advances in ensemble statistical approaches. The high performing conditional bivariate probability function (CBPF) and time-series signature were integrated within the R programming environment to facilitate the study's analysis. Hourly air pollution data for the period between 2007 to 2016 is collected using four air quality stations, (ca0016, ca0058, ca0054, and ca0025), situated in highly urbanized locations that are characterized by complex land use and high pollution emitting activities. A conditional bivariate probability function (CBPF) was used to analyze the data, utilizing pollutant concentration values such as Sulfur dioxide (SO2), Nitrogen oxides (NO2), Carbon monoxide (CO) and Particulate Matter (PM10) as a third variable plotted on the radial axis, with wind direction and wind speed variables. Generalized linear model (GLM) and sensitivity analysis are applied to verify and visualize the relationship between Air Pollution Index (API) of PM10 and other significant pollutants of GML outputs based on quantile values. To address potential future challenges, we forecast 3 months PM10 values using a Time Series Signature statistical algorithm with time functions and validated the outcome in the 4 stations. Analysis of results reveals that sources emitting PM10 have similar activities producing other pollutants (SO2, CO, and NO2). Therefore, these pollutants can be detected by cross selection between the pollution sources in the affected city. The directional results of CBPF plot indicate that ca0058 and ca0054 enable easier detection of pollutants' sources in comparison to ca0016 and ca0025 due to being located on the edge of industrial areas. This study's CBPF technique and time series signature analysis' outcomes are promising, successfully elaborating different sources of pollution that were hitherto undetectable using ordinary plot models and thus contribute to existing air quality assessment and enhancement mechanisms.
    Matched MeSH terms: Particulate Matter/analysis
  12. Othman M, Latif MT, Jamhari AA, Abd Hamid HH, Uning R, Khan MF, et al.
    Chemosphere, 2021 Jan;262:127767.
    PMID: 32763576 DOI: 10.1016/j.chemosphere.2020.127767
    This study aimed to determine the spatial distribution of PM2.5 and PM10 collected in four regions (North, Central, South and East Coast) of Peninsular Malaysia during the southwest monsoon. Concurrent measurements of PM2.5 and PM10 were performed using a high volume sampler (HVS) for 24 h (August to September 2018) collecting a total of 104 samples. All samples were then analysed for water soluble inorganic ions (WSII) using ion chromatography, trace metals using inductively coupled plasma-mass spectroscopy (ICP-MS) and polycyclic aromatic hydrocarbon (PAHs) using gas chromatography-mass spectroscopy (GC-MS). The results showed that the highest average PM2.5 concentration during the sampling campaign was in the North region (33.2 ± 5.3 μg m-3) while for PM10 the highest was in the Central region (38.6 ± 7.70 μg m-3). WSII recorded contributions of 22% for PM2.5 and 20% for PM10 mass, with SO42- the most abundant species with average concentrations of 1.83 ± 0.42 μg m-3 (PM2.5) and 2.19 ± 0.27 μg m-3 (PM10). Using a Positive Matrix Factorization (PMF) model, soil fertilizer (23%) was identified as the major source of PM2.5 while industrial activity (25%) was identified as the major source of PM10. Overall, the studied metals had hazard quotients (HQ) value of <1 indicating a very low risk of non-carcinogenic elements while the highest excess lifetime cancer risk (ELCR) was recorded for Cr VI in the South region with values of 8.4E-06 (PM2.5) and 6.6E-05 (PM10). The incremental lifetime cancer risk (ILCR) calculated from the PAH concentrations was within the acceptable range for all regions.
    Matched MeSH terms: Particulate Matter/analysis*
  13. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
    Matched MeSH terms: Particulate Matter/analysis*
  14. Wahid NB, Latif MT, Suan LS, Dominick D, Sahani M, Jaafar SA, et al.
    Bull Environ Contam Toxicol, 2014 Mar;92(3):317-22.
    PMID: 24435135 DOI: 10.1007/s00128-014-1201-1
    This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.
    Matched MeSH terms: Particulate Matter/analysis*
  15. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Particulate Matter/analysis*
  16. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Particulate Matter/analysis*
  17. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, et al.
    Sci Total Environ, 2017 Dec 01;601-602:556-570.
    PMID: 28575833 DOI: 10.1016/j.scitotenv.2017.05.153
    This study aims to determine PM2.5concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM2.5was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM2.5samples were collected from the centre of the city using a high-volume air sampler (HVS). The results showed that the mean PM2.5concentrations collected during pre-haze, haze and post-haze periods were 24.5±12.0μgm-3, 72.3±38.0μgm-3and 14.3±3.58μgm-3, respectively. The highest concentration of PM2.5during haze episode was five times higher than World Health Organisation (WHO) guidelines. Inorganic compositions of PM2.5, including trace elements and water soluble ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The major trace elements identified were K, Al, Ca, Mg and Fe which accounted for approximately 93%, 91% and 92% of the overall metals' portions recorded during pre-haze, haze and post-haze periods, respectively. For water-soluble ions, secondary inorganic aerosols (SO42-, NO3-and NH4+) contributed around 12%, 43% and 16% of the overall PM2.5mass during pre-haze, haze and post-haze periods, respectively. During haze periods, the predominant source identified using PMF was secondary inorganic aerosol (SIA) and biomass burning where the NAME simulations indicate the importance of fires in Sumatra, Indonesia. The main source during pre-haze and post-haze were mix SIA and road dust as well as mineral dust, respectively. The highest non-carcinogenic health risk during haze episode was estimated among the infant group (HI=1.06) while the highest carcinogenic health risk was estimated among the adult group (2.27×10-5).
    Matched MeSH terms: Particulate Matter/analysis
  18. Lim JY, Teng SY, How BS, Loy ACM, Heo S, Jansen J, et al.
    Environ Pollut, 2023 Oct 15;335:122335.
    PMID: 37558197 DOI: 10.1016/j.envpol.2023.122335
    Conventional fossil fuels are relied on heavily to meet the ever-increasing demand for energy required by human activities. However, their usage generates significant air pollutant emissions, such as NOx, SOx, and particulate matter. As a result, a complete air pollutant control system is necessary. However, the intensive operation of such systems is expected to cause deterioration and reduce their efficiency. Therefore, this study evaluates the current air pollutant control configuration of a coal-powered plant and proposes an upgraded system. Using a year-long dataset of air pollutants collected at 30-min intervals from the plant's telemonitoring system, untreated flue gas was reconstructed with a variational autoencoder. Subsequently, a superstructure model with various technology options for treating NOx, SOx, and particulate matter was developed. The most sustainable configuration, which included reburning, desulfurization with seawater, and dry electrostatic precipitator, was identified using an artificial intelligence (AI) model to meet economic, environmental, and reliability targets. Finally, the proposed system was evaluated using a Monte Carlo simulation to assess various scenarios with tightened discharge limits. The untreated flue gas was then evaluated using the most sustainable air pollutant control configuration, which demonstrated a total annual cost, environmental quality index, and reliability indices of 44.1 × 106 USD/year, 0.67, and 0.87, respectively.
    Matched MeSH terms: Particulate Matter/analysis
  19. Hassan A, Latif MT, Soo CI, Faisal AH, Roslina AM, Andrea YLB, et al.
    Lung Cancer, 2017 11;113:1-3.
    PMID: 29110834 DOI: 10.1016/j.lungcan.2017.08.025
    There have been few but timely studies examining the role of air pollution in lung cancer and survival. The Southeast Asia haze is a geopolitical problem that has occurred annually since 1997 in countries such as Malaysia, Singapore and Indonesia. To date, there has been no study examining the impact of the annual haze in the presentation of lung cancer. Data on all lung cancers and respiratory admissions to Universiti Kebangsaan Malaysia Medical Centre (UKMMC) from 1st January 2010 to 31th October 2015 were retrospectively collected and categorized as presentation during the haze and non-haze periods defined by the Department of Environment Malaysia. We report a lung cancer incidence rate per week of 4.5 cases during the haze compared to 1.8 cases during the non-haze period (p<0.01). The median survival for subjects presenting during the haze was 5.2 months compared to 8.1 months for the non-haze period (p<0.05). The majority of subjects diagnosed during the haze period initially presented with acute symptoms. Although this study could not suggest a cause and effect relationship of the annual haze with the incidence of lung cancer, this is the first study reporting a local air pollution-related modifiable determinant contributing to the increase in presentation of lung cancer in Southeast Asia.
    Matched MeSH terms: Particulate Matter/analysis
  20. Jamhari AA, Latif MT, Wahab MIA, Hassan H, Othman M, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 4):132309.
    PMID: 34601373 DOI: 10.1016/j.chemosphere.2021.132309
    This study aims to determine the inorganic and carbonaceous components depending on the seasonal variation and size distribution of urban air particles in Kuala Lumpur. Different fractions of particulate matter (PM) were measured using a Nanosampler from 17 February 2017 until 27 November 2017. The water-soluble inorganic ions (WSIIs) and carbonaceous components in all samples were analysed using ion chromatography and carbon analyser thermal/optical reflectance, respectively. Total PM concentration reached its peak during the southwest (SW) season (70.99 ± 6.04 μg/m3), and the greatest accumulation were observed at PM0.5-1.0 (22%-30%, 9.55 ± 1.03 μg/m3) and PM2.5-10 (22%-25%, 10.34 ± 0.81 μg/m3). SO42-, NO3- and NH4+ were major contributors of WSIIs, and their formation was favoured mainly during SW season (80.5% of total ions). PM0.5-1.0 and PM2.5-10 exhibited the highest percentage of WSII size distribution, accounted for 28.4% and 13.5% of the total mass, respectively. The average contribution of carbonaceous species (OC + EC) to total carbonaceous concentrations were higher in PM0.5-1.0 (35.2%) and PM2.5-10 (26.6%). Ultrafine particles (PM<0.1) consistently indicated that the sources were from vehicle emission while the SW season was constantly dominated by biomass burning sources. Using the positive matrix factorization (PMF) model, secondary inorganic aerosol and biomass burning (30.3%) was known as a significant source of overall PM. As a conclusion, ratio and source apportionment indicate the mixture of biomass burning, secondary inorganic aerosols and motor vehicle contributed to the size-segregated PM and seasonal variation of inorganic and carbonaceous components of urban air particles.
    Matched MeSH terms: Particulate Matter/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links