Displaying publications 1 - 20 of 293 in total

Abstract:
Sort:
  1. Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Graham ME, et al.
    Am J Bot, 2012 Sep;99(9):1541-52.
    PMID: 22947483 DOI: 10.3732/ajb.1200161
    The filamentous chlorophyte Cladophora produces abundant nearshore populations in marine and freshwaters worldwide, often dominating periphyton communities and producing nuisance growths under eutrophic conditions. High surface area and environmental persistence foster such high functional and taxonomic diversity of epiphytic microfauna and microalgae that Cladophora has been labeled an ecological engineer. We tested the hypotheses that (1) Cladophora supports a structurally and functionally diverse epiphytic prokaryotic microbiota that influences materials cycling and (2) mutualistic host-microbe interactions occur. Because previous molecular sequencing-based analyses of the microbiota of C. glomerata found as western Lake Michigan beach drift had identified pathogenic associates such as Escherichia coli, we also asked if actively growing lentic C. glomerata harbors known pathogens.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  2. Zucchi TD, Tan GYA, Goodfellow M
    Int J Syst Evol Microbiol, 2012 Jan;62(Pt 1):168-172.
    PMID: 21378137 DOI: 10.1099/ijs.0.029256-0
    The taxonomic positions of two thermophilic actinomycetes isolated from an arid Australian soil sample were established based on an investigation using a polyphasic taxonomic approach. The organisms had chemical and morphological properties typical of members of the genus Amycolatopsis and formed distinct phyletic lines in the Amycolatopsis methanolica 16S rRNA subclade. The two organisms were distinguished from one another and from the type strains of related species of the genus Amycolatopsis using a range of phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the two isolates be classified in the genus Amycolatopsis as Amycolatopsis thermophila sp. nov. (type strain GY088(T)=NCIMB 14699(T)=NRRL B-24836(T)) and Amycolatopsis viridis sp. nov. (type strain GY115(T)=NCIMB 14700(T)=NRRL B-24837(T)).
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  3. Zucchi TD, Tan GYA, Bonda ANV, Frank S, Kshetrimayum JD, Goodfellow M
    Int J Syst Evol Microbiol, 2012 Jun;62(Pt 6):1245-1251.
    PMID: 21764982 DOI: 10.1099/ijs.0.031039-0
    The taxonomic positions of three thermophilic actinomycetes isolated from arid soil samples were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Amycolatopsis. 16S rRNA gene sequence data supported the classification of the isolates in the genus Amycolatopsis and showed that they formed distinct branches in the Amycolatopsis methanolica subclade. DNA-DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The three isolates were readily distinguished from one another and from the type strains of species classified in the A. methanolica subclade based on a combination of phenotypic properties and by genomic fingerprinting. Consequently, it is proposed that the three isolates be classified in the genus Amycolatopsis as representatives of Amycolatopsis granulosa sp. nov. (type strain GY307(T) = NCIMB 14709(T) = NRRL B-24844(T)), Amycolatopsis ruanii sp. nov. (type strain NMG112(T) = NCIMB 14711(T) = NRRL B-24848(T)) and Amycolatopsis thermalba sp. nov. (type strain SF45(T) = NCIMB 14705(T) = NRRL B-24845(T)).
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  4. Zong Z, Wang X, Deng Y, Zhou T
    J Med Microbiol, 2012 Oct;61(Pt 10):1483-1484.
    PMID: 22820689 DOI: 10.1099/jmm.0.041525-0
    A previously healthy Chinese male returned from working in the Malaysian jungle with a fever. A blood culture grew Gram-negative bacilli that were initially identified as Burkholderia cepacia by the VITEK 2 system but were subsequently found to be Burkholderia pseudomallei by partial sequencing of the 16S rRNA gene. The identification of B. pseudomallei using commercially available automated systems is problematic and clinicians in non-endemic areas should be aware of the possibility of melioidosis in patients with a relevant travel history and blood cultures growing Burkholderia spp.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  5. Zokaeifar H, Balcázar JL, Kamarudin MS, Sijam K, Arshad A, Saad CR
    J Antibiot (Tokyo), 2012 Jun;65(6):289-94.
    PMID: 22491136 DOI: 10.1038/ja.2012.17
    In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30 °C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3-8.0 and against V. parahaemolyticus at pH 6.0-8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  6. Zin NZ, Tasrip NA, Desa MN, Kqueen CY, Zakaria ZA, Hamat RA, et al.
    Trop Biomed, 2011 Dec;28(3):651-60.
    PMID: 22433896 MyJurnal
    This study was to assess the identification and antimicrobial activities of two actinomycete isolates. The two isolates designated as B8 and C2, were isolated from a patch of soil in the peripheral area of Universiti Putra Malaysia by streaking on starch casein agar after standard serial dilution procedures. Their antimicrobial activities were first evaluated against eight clinical laboratory strains namely Bacillus sp., Enterococcus sp., Escherichia coli, Klebsiella sp., Pseudomonas sp., Salmonella sp., Staphylococcus aureus, and Staphylococcus epidermidis by perpendicular streak method on Mueller Hinton and Tryptic Soy agar. In both media, a broad-spectrum antibacterial activity was observed for both isolates, with B8 against all the test bacteria and C2 against five of them (Bacillus sp., E. coli, Pseudomonas sp., S. aureus and S. epidermidis). Re-assessment against E. coli ATCC 25922 and S. aureus ATCC 25923 strains by similar method showed antibacterial activities by isolate B8 against both ATTC strains while C2 only against S. aureus ATCC 25923. Streptomyces griseus ATCC 10137 was included in the later experiment and showed antibacterial activity against both ATCC strains. Subsequently, the two isolates were identified by PCR/sequencing techniques and phylogenetic analysis to be Streptomyces species (>93% homology based on 16S rRNA and rpoB genes). Characterization on cultural characteristic and viable count at different temperatures (37ºC and 28ºC), on different microbiological media (AIA, ISP-2, MHA, NA, PDA and TSA), were performed. More morphological features were observed on ISP-2 for both isolates. A higher growth yield was also observed at 28ºC in all media but in comparing that between the two isolates, isolate B8 outnumbered C2 at all experimental conditions. The observed variation in cultural traits and growth yield indicate unique properties between the two antibiotic-producing isolates.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  7. Zhu HY, Wei XY, Liu XZ, Bai FY
    Int J Syst Evol Microbiol, 2023 May;73(5).
    PMID: 37191980 DOI: 10.1099/ijsem.0.005865
    A yeast strain belonging to the basidiomycetous yeast genus Cystofilobasidium was isolated from a marine sediment sample collected in an intertidal zone in Shandong province, PR China. The results of phylogenetic analyses based on sequences of the D1/D2 domain of the 26S ribosomal RNA gene and the internal transcribed spacer (ITS) region indicate that this strain, together with three other strains isolated from basal ice collected in Norway, the gut of an insect and an alga collected in Russia, represent a novel species of the genus, for which the name Cystofilobasidium josepaulonis sp. nov. (holotype strain CGMCC 2.6672T) is proposed. The novel species differs from the known species of the genus Cystofilobasidium by 1.7 %-4.1 and 11.3 %-17.1 % mismatches in the D1/D2 domain and the ITS region, respectively. This species forms teliospores on potato dextrose agar (PDA) and 10 % V8 juice agar, but teliospore germination with basidia was not observed.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  8. Zhu HY, Wei YH, Guo LC, Wei XY, Li JN, Zhang RP, et al.
    Int J Syst Evol Microbiol, 2023 Oct;73(10).
    PMID: 37847534 DOI: 10.1099/ijsem.0.006076
    Three strains belonging to the basidiomycetous yeast genus Vishniacozyma were isolated from marine water samples collected from intertidal zones in Liaoning province, northeast China. Phylogenetic analyses based on the sequences of the small subunit (SSU) ribosomal DNA (rDNA), the D1/D2 domain of the large subunit (LSU) ribosomal DNA (rDNA), the internal transcribed spacer region (ITS), the two subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1), and the mitochondrial gene cytochrome b (CYTB) showed that these strains together with 20 strains from various geographic and ecological origins from other regions of the world represent a novel species in the genus Vishniacozyma. We propose the name Vishniacozyma pseudocarnescens sp. nov. (holotype CGMCC 2.6457) for the new species, which differs phenotypically from its close relatives V. carnescens, V. tephrensis, and V. victoriae by its ability to grow at 30 °C and on 50 % (w/v) glucose-yeast extract agar.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  9. Zhang XL, Li GX, Ge YM, Iqbal NM, Yang X, Cui ZD, et al.
    Antonie Van Leeuwenhoek, 2021 Jun;114(6):845-857.
    PMID: 33770293 DOI: 10.1007/s10482-021-01563-1
    During the study into the microbial biodiversity and bioactivity of the Microcystis phycosphere, a new yellow-pigmented, non-motile, rod-shaped bacterium containing polyhydroxybutyrate granules designated as strain Z10-6T was isolated from highly-toxic Microcystis aeruginosa Kützing M.TN-2. The new isolate produces active bioflocculating exopolysaccharides. Phylogenetic analysis based on 16S rRNA gene sequences indicated strain Z10-6T belongs to the genus Sphingopyxis with highest similarity to Sphingopyxis solisilvae R366T (98.86%), and the similarity to other Sphingopyxis members was less than 98.65%. However, both low values obtained by phylogenomic calculation of average nucleotide identity (ANI, 85.5%) and digital DNA-DNA hybridization (dDDH, 29.8%) separated the new species from its closest relative. The main polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and one unidentified aminophospholipid. The predominant fatty acids were summed feature 8, C17:1ω6c, summed feature 3, C16:0, C18:1ω7c 11-methyl and C14:0 2-OH. The respiratory quinone was ubiqunone-10, with spermidine as the major polyamine. The genomic DNA G + C content was 64.8 mol%. Several biosynthesis pathways encoding for potential new bacterial bioactive metabolites were found in the genome of strain Z10-6T. The polyphasic analyses clearly distinguished strain Z10-6T from its closest phylogenetic neighbors. Thus, it represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis microcysteis sp. nov. is proposed. The type strain is Z10-6T (= CCTCC AB2017276T = KCTC 62492T).
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  10. Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, et al.
    J Appl Microbiol, 2014 Jul;117(1):18-27.
    PMID: 24698479 DOI: 10.1111/jam.12514
    The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  11. Zareian M, Ebrahimpour A, Bakar FA, Mohamed AK, Forghani B, Ab-Kadir MS, et al.
    Int J Mol Sci, 2012;13(5):5482-97.
    PMID: 22754309 DOI: 10.3390/ijms13055482
    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  12. Zakaria Z, Radu S, Sheikh-Omar AR, Mutalib AR, Joseph PG, Rusul G
    Vet Microbiol, 1998 Jul;62(3):243-50.
    PMID: 9791871
    Pulsed field gel electrophoresis analysis of genomic DNA was used to investigate genetic diversity among Dichelobacter nodosus from footrot in sheep in Malaysia. Twelve Dichelobacter nodosus strains isolated from lesion materials from infected sheep were confirmed as Dichelobacter nodosus by polymerase chain reaction technique using the species-specific Dichelobacter nodosus 16S RNA sequence Ac and C as primers. Pulsed field gel electrophoresis banding profiles using restriction enzymes ApaI (5'GGGCCC3'), SfiI (5'GGCCNNNNNGGCC3') and SmaI ('5CCCGGG3') enabled the 12 Dichelobacter nodosus strains to be differentiated into eight different PFGE patterns and thus genome-types, with F (coefficient of similarity) values ranging from 0.17 to 1.0 (ApaI), 0.14 to 1.0 (SfiI) and 0.22 to 1.0 (SmaI). Strains with origin in different farms were shown to have different PFGE patterns (two strains, M7 and M8 were the only exception). On the basis of their PFGE, all field strains used in the study differed from the reference strains. Our data revealed that there are several clonal types of Dichelobacter nodosus isolates and indicated that there is probably more than one source of this pathogen on the farms studied. The study showed that strains of D. nodosus exhibited considerable genetic diversity using this method and that genomic analysis by pulsed field gel electrophoresis was useful in discriminating the D. nodosus strains.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  13. Zainudin MHM, Ramli N, Hassan MA, Shirai Y, Tashiro K, Sakai K, et al.
    J Ind Microbiol Biotechnol, 2017 06;44(6):869-877.
    PMID: 28197796 DOI: 10.1007/s10295-017-1916-1
    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  14. Yoshida T, Kondo N, Hanifah YA, Hiramatsu K
    Microbiol. Immunol., 1997;41(9):687-95.
    PMID: 9343819
    We have previously reported the phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clinical strains isolated in Malaya University Hospital in the period 1987 to 1989 using antibiogram, coagulase typing, plasmid profiles, and phage typing. Here, we report the analysis of the same strains with three genotyping methods; ribotyping, pulsed-field gel electrophoresis (PFGE) typing, and IS431 typing (a restriction enzyme fragment length polymorphism analysis using an IS431 probe). Ribotyping could discriminate 46 clinical MRSA strains into 5 ribotypes, PFGE typing into 22 types, and IS431 typing into 15 types. Since the differences of the three genotyping patterns from strain to strain were quite independent from one another, the combined use of the three genotyping methods could discriminate 46 strains into 39 genotypes. Thus, the powerful discriminatory ability of the combination was demonstrated.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics*
  15. Yong SF, Goh FN, Ngeow YF
    J Water Health, 2010 Mar;8(1):92-100.
    PMID: 20009251 DOI: 10.2166/wh.2009.002
    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  16. Yong PL, Chan KG
    ScientificWorldJournal, 2014;2014:874764.
    PMID: 25177734 DOI: 10.1155/2014/874764
    We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  17. Yong HS, Lim PE, Tan J, Ng YF, Eamsobhana P, Suana IW
    Sci Rep, 2014 Jul 03;4:5553.
    PMID: 24989852 DOI: 10.1038/srep05553
    Dragonflies of the genus Orthetrum are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of Orthetrum dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of Orthetrum. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum. This study also reveals distinct genetic lineages between O. pruinosum schneideri (occurring in Malaysia) and O. pruinosum neglectum (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  18. Yong HS, Song SL, Eamsobhana P, Pasartvit A, Lim PE
    Mol Biol Rep, 2019 Aug;46(4):3765-3776.
    PMID: 31012029 DOI: 10.1007/s11033-019-04818-3
    Zeugodacus cucurbitae (Coquillet) is one of the most significant and widespread tephritid pest species of agricultural crops. This study reports the bacterial communities associated with Z. cucurbitae from three geographical regions in Southeast Asia (Thailand, Peninsular Malaysia, and Sarawak). The bacterial microbiota were investigated by targeted 16S rRNA gene (V3-V4 region) sequencing using the Illumina Mi-Seq platform. At 97% similarity and filtering at 0.001%, there were seven bacterial phyla and unassigned bacteria, comprising 11 classes, 23 orders, 39 families and 67 genera. The bacterial diversity and richness varied within and among the samples from the three geographical regions. Five phyla were detected for the Sarawak sample, and six each for the Thailand and Peninsular Malaysia samples. Four phyla-Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria-were represented in all the fruit fly specimens, forming the core members of the bacterial community. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Firmicutes, and Actinobacteria. Fifty-three genera were represented in the Thailand sample, 56 in the Peninsular Malaysia sample, and 55 in the Sarawak sample. Forty-two genera were present in all the three geographical regions. The predominant core members were order Enterobacteriales (Proeteobacteria), and family Enterobacteriaceae (Enterobacteriales). Klebsiella (Enterobacteriaceae) was the predominant genus and K. oxytoca the predominant species with all specimens having > 10% relative abundance. The results indicate the presence of a great diversity as well as core members of the bacterial community associated with different populations of Z. cucurbitae.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics*
  19. Yong HS, Song SL, Chua KO, Lim PE
    Curr Microbiol, 2017 Sep;74(9):1076-1082.
    PMID: 28642971 DOI: 10.1007/s00284-017-1287-x
    Bactrocera carambolae is a highly polyphagous fruit pest of agricultural importance. This study reports the bacterial communities associated with the developmental stages of B. carambolae. The microbiota of the developmental stages were investigated by targeted 16S rRNA gene (V3-V4 region) sequencing using the Illumina MiSeq. At 97% similarity, there were 19 bacterial phyla and unassigned bacteria, comprising 39 classes, 86 orders, 159 families and 311 genera. The bacterial composition varied among the specimens of developmental stage and across developmental stages as well as exuviae. Four phyla of bacteria (with relative abundance of ≥1% in at least one specimen)-Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria-were recovered from the larva, pupa, adult stages and exuviae. Proteobacteria was the predominant phylum in all the developmental stages as well as the exuviae. Enterobacteriaceae (Proteobacteria) was the predominant family in the adult flies while the family [Weeksellaceae] (Bacteroidetes) was predominant in the larval and pupal stages. Among the genera occurring in more than one developmental stage of B. carambolae, Erwinia was more abundant in the larval stage, Halomonas more abundant in adult female, Stenotrophomonas more abundant in adult male, and Chryseobacterium more abundant in the larval and pupal stages. The results indicate transmission of bacteria OTUs from immatures to the newly emerged adults, and from exuviae to the environment.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  20. Yean CY, Yin LS, Lalitha P, Ravichandran M
    BMC Microbiol, 2007 Dec 11;7:112.
    PMID: 18070365
    BACKGROUND: Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE). This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR), multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene.

    RESULTS: Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases.

    CONCLUSION: The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay developed in this study can be used as an effective surveillance tool to study the prevalence of enterococci and their antibiotic resistance pattern in hospitals and farm animals.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links