Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Alashrah S, Kandaiya S, Lum LS, Cheng SK
    Z Med Phys, 2013 Dec;23(4):270-8.
    PMID: 24113373 DOI: 10.1016/j.zemedi.2013.09.001
    One of the factors which influence the spatial resolution of a 2D detector array is the size of the single detector, another the transport of the secondary electrons from the walls into the measuring volume. In this study, the single ion chamber dose response function of an I'mRT MatriXX array was determined by comparison between slit beam dose profiles measured with the array and with EBT2 radiochromic film in a solid water-equivalent phantom at a shallow depth of 0.5cm and at a depth of 5cm beyond the depth dose maximum for a 6 MV photon beam. The dose response functions were obtained using two methods, the best fit method and the deconvolution method. At the shallow depth, a Lorentz function and at 5cm depth a Gaussian function, both with the same FWHM of 7.4mm within limits of uncertainty, were identified as the best suited dose response functions of the 4.5mm diameter single array chamber. These dose response functions were then tested on various dose profiles whose true shape had been determined with EBT2 film and with the IC03 ionization chamber. By convolving these with the Lorentz kernel (at shallow depth) and the Gaussian kernel (at 5cm depth) the signal profiles measured with the I'mRT MatriXX array were closely approximated. Thus, the convolution of TPS-calculated dose profiles with these dose response functions can minimize the differences between calculation and measurement which occur due to the limited spatial resolution of the I'mRT MatriXX detector.
    Matched MeSH terms: Radiometry/instrumentation*
  2. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Adnan MA
    ScientificWorldJournal, 2014;2014:242658.
    PMID: 24741344 DOI: 10.1155/2014/242658
    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.
    Matched MeSH terms: Radiometry/instrumentation*; Radiometry/methods*
  3. Mahyuddin NM, Russell G
    ScientificWorldJournal, 2014;2014:876435.
    PMID: 24782671 DOI: 10.1155/2014/876435
    Technology scaling relies on reduced nodal capacitances and lower voltages in order to improve performance and power consumption, resulting in significant increase in layout density, thus making these submicron technologies more susceptible to soft errors. Previous analysis indicates a significant improvement in SEU tolerance of the driver when the bias current is injected into the circuit but results in increase of power dissipation. Subsequently, other alternatives are considered. The impact of transistor sizes and temperature on SEU tolerance is tested. Results indicate no significant changes in Q(crit) when the effective transistor length is increased by 10%, but there is an improvement when high temperature and high bias currents are applied. However, this is due to other process parameters that are temperature dependent, which contribute to the sharp increase in Q(crit). It is found that, with temperature, there is no clear factor that can justify the direct impact of temperature on the SEU tolerance. Thus, in order to improve the SEU tolerance, high bias currents are still considered to be the most effective method in improving the SEU sensitivity. However, good trade-off is required for the low-swing driver in order to meet the reliability target with minimal power overhead.
    Matched MeSH terms: Radiometry
  4. Islam MM, Islam MT, Faruque MR
    ScientificWorldJournal, 2013;2013:378420.
    PMID: 24385878 DOI: 10.1155/2013/378420
    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.
    Matched MeSH terms: Radiometry
  5. Iskandar SM, Elias S, Jumiah H, Asri MT, Masrianis A, Ab Rahman MZ, et al.
    Med J Malaysia, 2004 May;59 Suppl B:212-3.
    PMID: 15468893
    The radiation-response characteristics of polymetharylic acid gel dosimeter prepared with different concentrations of monomer and cross-linker is described in these studies. The dosimeters were prepared under the hypoxic condition in a glove box and were then irradiated with gamma-rays produced by Co-60 radionuclide that was generated at 1.25MeV energy. The irradiation took place at different doses ranged from 0Gy to 19Gy. Due to the radiation activities, chain-reaction polymerisation processes had taken place in the formation of polymethacrylic acid (PMAA) gel, which cause the dose response mechanism increased in the NMR relaxation rates of protons. It has been observed that for higher concentration of monomer and cross-linker, the polymerization rate was increased.
    Matched MeSH terms: Radiometry/instrumentation*
  6. Sulaiman BT, Clarke SE
    Med J Malaysia, 1996 Mar;51(1):131-3.
    PMID: 10967992
    A total of 10 volunteers were monitored for radiation doses, whose spouses were given radio-iodine (131I) orally. Nine of the spouses were given radio-iodine for Graves' disease and one for thyroid carcinoma. It was found that the highest radiation dose received by the volunteer was only 13.5% of the annual dose limit for individual members of the public. Hence, patients treated with radio-iodine do not pose a significant radiation hazard to the public.
    Matched MeSH terms: Radiometry*
  7. Samat SB, Evans CJ, Kadni T, Dolah MT
    Br J Radiol, 2000 Aug;73(872):867-77.
    PMID: 11026863
    A cylindrical gamma-ray 60Co source of activity alpha is predicted to produce an exposure rate X at a distance d in vacuum, given by X = gamma(T)(alpha/d2), where gamma(T) is the specific gamma-ray constant. It has been documented that this formula may be used to approximate X with an accuracy of 1% from a source of length l, provided that d/l > or = 5. It is shown that the formula is accurate to 0.1% under these conditions, provided that the distance is measured from the centre of the source. When absorption in the source and scattering in the collimator are considered, the position of the origin d = 0 can shift by a distance of the order of centimetres. Absorption in air between the source and the ionization chamber adds an exponential factor to the formula. It is shown that even when these modifications are included the discrepancy in the results, although generally less than 1%, is still large compared with the measurement errors. Some suggestions are made for the origin of this discrepancy.
    Matched MeSH terms: Radiometry/methods
  8. Yahya N, Chua XJ, Manan HA, Ismail F
    Strahlenther Onkol, 2018 08;194(8):780-786.
    PMID: 29774397 DOI: 10.1007/s00066-018-1303-5
    PURPOSE: This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies.

    MATERIALS AND METHODS: Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.

    RESULTS: A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.

    CONCLUSION: A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

    Matched MeSH terms: Radiometry/methods*
  9. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH
    Sensors (Basel), 2019 May 14;19(10).
    PMID: 31091779 DOI: 10.3390/s19102226
    Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes - including light-emitting diodes (LEDs), phototransistors-including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.
    Matched MeSH terms: Radiometry/trends*
  10. Yahya N, Ebert MA, Bulsara M, Haworth A, Kennedy A, Joseph DJ, et al.
    Radiother Oncol, 2015 Jul;116(1):112-8.
    PMID: 26163088 DOI: 10.1016/j.radonc.2015.06.011
    To identify dosimetry, clinical factors and medication intake impacting urinary symptoms after prostate radiotherapy.
    Matched MeSH terms: Radiometry
  11. Salehi Z, Yusoff AL
    Radiat Prot Dosimetry, 2013;154(3):396-9.
    PMID: 23012482 DOI: 10.1093/rpd/ncs239
    A femur phantom made of wax and a real human bone was used to study the dose during radiographical procedures. The depth dose inside the phantom was determined using DOSXYZnrc, a Monte Carlo simulation software. The results were verified with measurements using TLD-100H. It was found that for 2.5 mm aluminium filtered 84-kVp X-rays, the radiation dose in the bone reached 57 % higher than the surface dose, i.e. 3.23 mGy as opposed to 2.06 mGy at the surface. The use of real bone introduces variations in the bone density in the DOSXYZnrc model, resulting in a lower attenuation effect than expected from solid bone tissues.
    Matched MeSH terms: Radiometry/methods*
  12. Sabarudin A, Sun Z, Ng KH
    Radiat Prot Dosimetry, 2013;154(3):301-7.
    PMID: 22972797 DOI: 10.1093/rpd/ncs243
    A retrospective analysis was performed in patients undergoing prospective ECG-triggered coronary computed tomography (CT) angiography (CCTA) with the single-source 64-slice CT (SSCT), dual-source 64-slice CT (DSCT), dual-source 128-slice CT and 320-slice CT with the aim of comparing the radiation dose associated with different CT generations. A total of 164 patients undergoing prospective ECG-triggered CCTA with different types of CT scanners were studied with the mean effective doses estimated at 6.8 ± 3.2, 4.2 ± 1.9, 4.1±0.6 and 3.8 ± 1.4 mSv corresponding to the 128-slice DSCT, 64-slice DSCT, 64-slice SSCT and 320-slice CT scanners. In this study a positive relationship was found between the effective dose and the body mass index (BMI). A low radiation dose is achieved in prospective ECG-triggered CCTA, regardless of the CT scanner generation. BMI is identified as the major factor that has a direct impact on the effective dose associated with prospective ECG-triggered CCTA.
    Matched MeSH terms: Radiometry/statistics & numerical data
  13. Khandaker MU, Jojo PJ, Kassim HA, Amin YM
    Radiat Prot Dosimetry, 2012 Nov;152(1-3):33-7.
    PMID: 22887119 DOI: 10.1093/rpd/ncs145
    Concentrations of primordial radionuclides in common construction materials collected from the south-west coastal region of India were determined using a high-purity germanium gamma-ray spectrometer. Average specific activities (Bq kg(-1)) for (238)U((226)Ra) in cement, brick, soil and stone samples were obtained as 54 ± 13, 21 ± 4, 50 ± 12 and 46 ± 8, respectively. Respective values of (232)Th were obtained as 65 ± 10, 21 ± 3, 58 ± 10 and 57 ± 12. Concentrations of (40)K radionuclide in cement, brick, soil and stone samples were found to be 440 ± 91, 290 ± 20, 380 ± 61 and 432 ± 64, respectively. To evaluate the radiological hazards, radium equivalent activity, various hazard indices, absorbed dose rate and annual effective dose have been calculated, and compared with the literature values. Obtained data could be used as reference information to assess any radiological contamination due to construction materials in future.
    Matched MeSH terms: Radiometry/methods
  14. Sabarudin A, Md Yusof AK, Tay MF, Ng KH, Sun Z
    Radiat Prot Dosimetry, 2013;153(4):441-7.
    PMID: 22807493 DOI: 10.1093/rpd/ncs127
    This study was conducted to investigate the effectiveness of dose-saving protocols in dual-source computed tomography (CT) coronary angiography compared with invasive coronary angiography (ICA). On 50 patients who underwent coronary CT angiography was performed dual-source CT (DSCT) and compared with ICA procedures. Entrance skin dose (ESD), which was measured at the thyroid gland, and effective dose (E) were assessed for both imaging modalities. The mean ESD measured at the thyroid gland was the highest at 120 kVp, followed by the 100 kVp DSCT and the ICA protocols with 4.0±1.8, 2.7±1.0 and 1.1±1.2 mGy, respectively. The mean E was estimated to be 10.3±2.1, 6.2±2.3 and 5.3±3.4 mSv corresponding to the 120-kVp, 100-kVp DSCT and ICA protocols, respectively. The application of 100 kVp in DSCT coronary angiography is feasible only in patients with a low body mass index of <25 kg m(-2), which leads to a significant dose reduction with the radiation dose being equivalent to that of ICA.
    Matched MeSH terms: Radiometry/methods
  15. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC
    Radiat Prot Dosimetry, 2012 Apr;149(3):340-6.
    PMID: 21642647 DOI: 10.1093/rpd/ncr230
    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
    Matched MeSH terms: Radiometry/methods*
  16. Mod Ali N
    Radiat Prot Dosimetry, 2011 Mar;144(1-4):90-4.
    PMID: 21147789 DOI: 10.1093/rpd/ncq454
    As a laboratory certified to ISO 9001:2008 and accredited to ISO/IEC 17025, the Secondary Standard Dosimetry Laboratory (SSDL)-Nuclear Malaysia has incorporated an overall comprehensive system for technical and quality management in promoting a reliable individual monitoring service (IMS). Faster identification and resolution of issues regarding dosemeter preparation and issuing of reports, personnel enhancement, improved customer satisfaction and overall efficiency of laboratory activities are all results of the implementation of an effective quality system. Review of these measures and responses to observed trends provide continuous improvement of the system. By having these mechanisms, reliability of the IMS can be assured in the promotion of safe behaviour at all levels of the workforce utilising ionising radiation facilities. Upgradation of in the reporting program through a web-based e-SSDL marks a major improvement in Nuclear Malaysia's IMS reliability on the whole. The system is a vital step in providing a user friendly and effective occupational exposure evaluation program in the country. It provides a higher level of confidence in the results generated for occupational dose monitoring of the IMS, thus, enhances the status of the radiation protection framework of the country.
    Matched MeSH terms: Radiometry/methods; Radiometry/standards*
  17. Shakhreet BZ, Bauk S, Tajuddin AA, Shukri A
    Radiat Prot Dosimetry, 2009 Jul;135(1):47-53.
    PMID: 19482883 DOI: 10.1093/rpd/ncp096
    The mass attenuation coefficients (mu/rho) of Rhizophora spp. were determined for photons in the energy range of 15.77-25.27 keV. This was carried out by studying the attenuation of X-ray fluorescent photons from zirconium, molybdenum, palladium, silver, indium and tin targets. The results were compared with theoretical values for average breast tissues in young-age, middle-age and old-age groups calculated using photon cross section database (XCOM), the well-known code for calculating attenuation coefficients and interaction cross-sections. The measured mass attenuation coefficients were found to be very close to the calculated XCOM values in breasts of young-age group.
    Matched MeSH terms: Radiometry/methods*
  18. Ng KH, Jamal N, DeWerd L
    Radiat Prot Dosimetry, 2006;121(4):445-51.
    PMID: 16709704
    The systematic monitoring of image quality and radiation dose is an ultimate solution to ensuring the continuously high quality of mammography examination. At present several protocols exist around the world, and different test objects are used for quality control (QC) of the physical and technical aspects of screen-film mammography. This situation may lead to differences in radiation image quality and dose reported. This article reviews the global QC perspective for the physical and technical aspects of screen-film mammography with regard to image quality and radiation dose. It points out issues that must be resolved in terms of radiation dose and that also affect the comparison.
    Matched MeSH terms: Radiometry/standards*
  19. Samat SB, Evans CJ
    Radiat Prot Dosimetry, 2003;103(4):341-7.
    PMID: 12797557
    For the specific absorbed dose constant for 60Co photons, three values quoted directly in the literature and two derived indirectly from published information are reported. The three publications giving the direct values mentioned no medium of absorption, whereas the other two specify tissue. A database of the specific absorbed dose constant is generated for each of 14 media namely air, water, bone and 11 types of soft tissue. These values are consistent with the three directly quoted values plus one of the indirectly obtained values. Air is found to be unlikely as the medium for the first three; and appropriate media for these are suggested. For the other two values, the generated database suggests that one is too small to be accurate; while the other is correct for tissue (as stated in the publication). An apparent error of 10(3) is identified in one of the values directly quoted.
    Matched MeSH terms: Radiometry/methods*
  20. Jamil A, Mohd MI, Zain NM
    Radiat Prot Dosimetry, 2018 Dec 01;182(4):413-418.
    PMID: 29767799 DOI: 10.1093/rpd/ncy082
    After years of establishment of computed radiography (CR) and digital radiography (DR), manufacturers have introduced exposure indicator/index (EI) as a feedback mechanism for patient dose. However, EI consistency is uncertain for CR. Most manufacturers recommended EI values in a range of numbers for all examination, instead of giving the exact range for a specific body part, raising a concern of inappropriate exposure given to the patient in clinical practice. The aims of this study were to investigate the EI consistency in DR systems produced in constant exposure parameters and clinical condition, and to determine the interaction between the anatomical part and EI. A phantom study of skull, chest, abdomen and hand was carried out and four systems were used for comparison-Fuji CR, Carestream CR, Siemens DR and Carestream DR. For each projection, the phantom positioning and exposure parameters were set according to the standard clinical practice. All exposure parameters and clinical conditions were kept constant. Twenty (20) exposures were taken for each projection and the EI was recorded. Findings showed that EI is not consistent in DR systems despite constant exposure parameters and clinical condition except in Siemens DR, through skull examination. Statistical analysis showed a significant interaction between anatomical parts and EI values (P < 0.05). EI alone was proven to be less reliable to provide technologist a correct feedback on exposure level. The interaction between anatomical parts and EI values intensifies the need for an anatomical-specific EI values set by all manufacturers for accurate feedback on the exposure parameters used and the detector entrance dose.
    Matched MeSH terms: Radiometry/instrumentation*; Radiometry/standards*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links