Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Rats, Inbred SHR
  2. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  3. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Rats, Inbred SHR
  4. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
    Matched MeSH terms: Rats, Inbred SHR
  5. Nik Yusoff NS, Mustapha Z, Govindasamy C, Sirajudeen KN
    Oxid Med Cell Longev, 2013;2013:927214.
    PMID: 23766863 DOI: 10.1155/2013/927214
    Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg(-1) day(-1)) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg(-1) day(-1)) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
    Matched MeSH terms: Rats, Inbred SHR
  6. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Rats, Inbred SHR
  7. Abdulla MH, Sattar MA, Abdullah NA, Khan MA, Abdallah HH, Johns EJ
    Eur J Pharmacol, 2009 Jun 10;612(1-3):69-74.
    PMID: 19356722 DOI: 10.1016/j.ejphar.2009.03.064
    This study set out to investigate the impact of chronic cumulative blockade of angiotensin II and adrenoceptors in WKY and SHR and to explore how the renovascular responses to adrenergic and angiotensin II receptor agonists may be interdependent. Rats were treated with either losartan, carvedilol or losartan+carvedilol for 7 days and on day eight, animals were pentobarbitone anaesthetized and prepared for renal haemodynamic study. Dose-response relationships were determined in terms of reduction/elevation in the magnitude of renal blood flow in response to intrarenal arterial injection of dopamine, phenylephrine and isoprenaline. Renal vascular responses were blunted in WKY and SHR treated with either losartan or carvedilol as compared to their untreated counterparts (P<0.05). In the combined treated rats, the vascular responses to isoprenaline and phenylephrine were restored to levels observed in the untreated rats, but the renal vasoconstrictor responses to dopamine decreased (P<0.05) in both WKY and SHR. There was a reduction of (P<0.05) in the magnitude of the isoprenaline induced renal vasodilation in all SHR as compared to WKY groups. The data obtained showed that the renal vascular action of dopamine, phenylephrine and isoprenaline depended on an intact renin-angiotensin system (RAS) in WKY and SHR. Treatment with losartan or carvedilol blunted the renal vasoconstrictor/vasodilator responses to sympathomimetics which was attenuated with the combined treatment. These observations using chronic blockade of adrenergic and angiotensin receptors demonstrated that there was a long standing interdependency between the RAS and sympathetic nervous system (SNS) in determining the responsiveness of the renal vasculature of normal and hypertensive rats.
    Matched MeSH terms: Rats, Inbred SHR
  8. Abdulla MH, Sattar MA, Khan MA, Abdullah NA, Johns EJ
    Acta Physiol (Oxf), 2009 Mar;195(3):397-404.
    PMID: 19183357 DOI: 10.1111/j.1748-1716.2008.01895.x
    This study investigated the influence of angiotensin II (Ang II) receptor and adrenergic blockade on the renal vasoconstrictions caused by Ang II and adrenergic agonists in spontaneously hypertensive rats (SHR).
    Matched MeSH terms: Rats, Inbred SHR
  9. Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KR, Rathore HA, et al.
    Auton Autacoid Pharmacol, 2008 Oct;28(4):95-101.
    PMID: 18778332 DOI: 10.1111/j.1474-8673.2008.00422.x
    1. This study was undertaken to elucidate the effects of inhibiting the renin-angiotensin system (RAS) with losartan, and acute unilateral renal denervation on renal haemodynamic responses to intrarenal administration of vasoconstrictor doses of dopamine and vasodilator doses of isoprenaline in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). 2. Acute unilateral renal denervation of the left kidney in rats was confirmed by a drop in the renal vasoconstrictor response to renal nerve stimulation (P < 0.05) along with diuresis and natriuresis. Rats were pretreated with losartan for 7 days and thereafter animals fasted overnight were anaesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and acute renal haemodynamic responses studied. 3. Dose-response curves were constructed for dopamine and isoprenaline that induced falls or increases in renal blood flow, respectively. It was observed that renal vascular responses were greater in the denervated as compared with rats with intact renal nerves (all P < 0.05). Dopamine-induced renal vasoconstrictor responses were markedly lower in losartan-treated denervated WKY and SHR compared with their untreated counterparts (all P < 0.05). It was also observed that in losartan-treated and denervated WKY rats the vasodilatory responses to isoprenaline were markedly lower compared with untreated rats (all P < 0.05). However, in SHR, under the same conditions, there was no difference in the renal response to isoprenaline whether or not rats were treated with losartan (P > 0.05). 4. The data obtained showed that the renal vasoconstrictor effect of dopamine depends on intact renal nerves and RAS in WKY and SHR. Isoprenaline responses were likewise sensitive to renal denervation and RAS inhibition in WKY rats but not SHRs. Our observations reveal a possible relationship between renal AT(1) receptors and alpha(1)-adrenoceptors in WKY and SHR. There is also evidence to suggest an interaction between renal beta-adrenoceptors and AT(1) receptors in WKY rats.
    Matched MeSH terms: Rats, Inbred SHR
  10. Abdulla MH, Sattar MA, Salman IM, Abdullah NA, Ameer OZ, Khan MA, et al.
    Auton Autacoid Pharmacol, 2008 Apr-Jul;28(2-3):87-94.
    PMID: 18598290 DOI: 10.1111/j.1474-8673.2008.00421.x
    1 This study was undertaken to characterize the renal responses to acute unilateral renal denervation in anaesthetized spontaneously hypertensive rats (SHR) by examining the effect of acute unilateral renal denervation on the renal hemodynamic responses to a set of vasoactive agents and renal nerve stimulation. 2 Twenty-four male SHR rats underwent acute unilateral renal denervation and the denervation was confirmed by significant drop (P < 0.05) in renal vasoconstrictor response to renal nerve stimulation along with marked diuresis and natriuresis following denervation. After 7 days treatment with losartan, the overnight fasted rats were anaesthetized (sodium pentobarbitone, 60 mg kg(-1) i.p.) and renal vasoconstrictor experiments were performed. The changes in the renal vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine, methoxamine and angiotensin II. 3 The data showed that there was significantly (all P < 0.05) increased renal vascular responsiveness to the vasoactive agents in denervated rats compared to those with intact renal nerves. In losartan-treated denervated SHR rats, there were significant (all P < 0.05) reductions in the renal vasoconstrictor responses to neural stimuli and vasoactive agents as compared with that of untreated denervated SHR rats. 4 The data obtained in denervated rats suggested an enhanced sensitivity of the alpha(1)-adrenoceptors to adrenergic agonists and possible increase of AT(1) receptors functionality in the renal vasculature of these rats. These data also suggested a possible interaction between sympathetic nervous system and renin-angiotensin system in terms of a crosstalk relationship between renal AT(1) and alpha(1)-adrenoceptor subtypes.
    Matched MeSH terms: Rats, Inbred SHR
  11. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
    Matched MeSH terms: Rats, Inbred SHR
  12. Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ
    Exp. Toxicol. Pathol., 2007 Nov;59(3-4):253-60.
    PMID: 17764917
    The pathogenesis of cisplatin-induced renal failure is related to reduced renal blood flow due to severe tubular damage and enhanced renovascular resistance. It is also known that alpha(1)-adrenoceptors, the major subtype of alpha-adrenoceptors in renal vasculature play the pivotal role in regulating renal hemodynamics. With this background, we have hypothesized that the altered renal hemodynamics and enhanced renovascular resistance in cisplatin-induced renal failure might be caused by the altered alpha-adrenergic responsiveness with a possible involvement of alpha(1)-adrenoceptors in the renal vasculature. In a unique experimental approach with anesthetized rats, this study has therefore examined if there is any shift in the renovascular responsiveness to renal nerve stimulation and a series of alpha-adrenergic agonists in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats with cisplatin-induced renal failure in comparison with their body weight-matched normal controls. Thirty-two male rats of both WKY (n=16) and SHR (n=16) origin with body weight 236+/-7.9 g received cisplatin (5mg/kg i.p.). The renal failure was confirmed in terms of significantly reduced renal blood flow, reduced creatinine clearance, increased fractional excretion of sodium, increased kidney index (all P<0.05) and tubular damage. After 7 days of cisplatin, the overnight fasted rats were anesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and renal vasoconstrictor experiments were done. The changes in the vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by electrical renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine and methoxamine. It was observed that in the cisplatin-treated renal failure WKY and SHR rats there were significant (all P<0.05) reductions in the renal blood flow along with significantly (P<0.05) higher renal adrenergic responsiveness as compared with their non-renal failure controls. The data showed that in the renal failure WKY and SHR rats, the altered renal hemodynamics might be caused by an augmented renal adrenergic responsiveness. The results obtained further led us to suggest that the augmented renal adrenergic responsiveness in the cisplatin-induced renal failure rats were possibly mediated by the alpha(1)-adrenoceptors.
    Matched MeSH terms: Rats, Inbred SHR
  13. Boon CM, Ng MH, Choo YM, Mok SL
    PLoS One, 2013;8(2):e55908.
    PMID: 23409085 DOI: 10.1371/journal.pone.0055908
    Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  14. Mustafa MR, Dharmani M, Kunheen NK, Sim MK
    Regul. Pept., 2004 Aug 15;120(1-3):15-22.
    PMID: 15177916
    An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10(-15) M DAA-I, while effective attenuation was only seen with 10(-9) M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  15. Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, et al.
    J Physiol Biochem, 2016 Dec;72(4):593-604.
    PMID: 27405250
    Adiponectin exerts vasodilatory effects. Irbesartan, an angiotensin receptor blocker, possesses partial peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist activity and increases circulating adiponectin. This study explored the effect of irbesartan alone and in combination with adiponectin on blood pressure, renal hemodynamic excretory function, and vasoactive responses to angiotensin II and adrenergic agonists in spontaneously hypertensive rat (SHR). Irbesartan was given orally (30 mg/kg/day) for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Groups of SHR received either irbesartan or adiponectin or in combination. A group of Wistar Kyoto rats (WKY) served as controls. Metabolic data and plasma samples were taken on days 0, 21, and 28. In acute studies, the renal vasoconstrictor actions of angiotensin II (ANGII), noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) were determined. SHR control rats had a higher mean blood pressure than the WKY (132 ± 7 vs. 98 ± 2 mmHg), lower plasma and urinary adiponectin, creatinine clearance, urine flow rate and sodium excretion, and oxidative stress markers compared to WKY (all P SHR (P SHR further decreased the renal vascular responses to ANGII. These findings suggest that an interactive relationship may exist between PPAR-γ, alpha adrenoceptors, and ANGII in the renal vasculature of the SHR.
    Matched MeSH terms: Rats, Inbred SHR
  16. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Clin Exp Pharmacol Physiol, 2006 Apr;33(4):345-50.
    PMID: 16620299
    1. There is a growing interest in the anti-oxidant characteristics and use of flavonoids in the management of cardiovascular diseases. The cardiovascular mechanism of action of these plant derivatives remains controversial. This study compared the effects of the flavonoid quercetin with those of the anti-oxidant vitamin ascorbic acid (vitamin C) on the reactivity of aortic rings from spontaneously hypertensive rats (SHR). 2. The phenylephrine (PE)-induced contractile and the endothelium-dependent and independent relaxant responses of aortic rings from 21 to 22 week old SHR and age-matched normotensive Wistar (WKY) rats were observed in the presence of quercetin or ascorbic acid. All the experiments were performed in the presence of the cyclooxygenase inhibitor, indomethacin (10 micromol/L). 3. The endothelium-dependent and independent relaxations to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were significantly lesser in the SHR compared to the WKY tissues whereas the contractile responses to PE were similar in both tissues. Pretreatment of WKY rings with quercetin or ascorbic acid had no effect on the responses to ACh or PE. In the SHR tissues, however, quercetin or ascorbic acid significantly improved the relaxation responses to ACh and reduced the contractions to PE with greater potency for quercetin. Both compounds lacked any effects on the responses to SNP in either aortic ring types. N(omega)-nitro-L-arginine methyl ester (l-NAME, 10 micromol/L) significantly attenuated the vasodepressor effects of quercetin and ascorbic acid, raising the responses to PE to a level similar to that observed in the control SHR tissues. In l-NAME pretreated aortic rings, quercetin and ascorbic acid inhibited the contractile responses to PE with the same magnitude in WKY and SHR tissues. 4. The present results suggest that acute exposure to quercetin improves endothelium-dependent relaxation and reduces the contractile responses of hypertensive aortae with a greater potency than ascorbic acid. This suggests a better vascular protection with this flavonoid than ascorbic acid in the SHR model of hypertension and possibly in human cardiovascular diseases.
    Matched MeSH terms: Rats, Inbred SHR
  17. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Rats, Inbred SHR
  18. Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, et al.
    J Ethnopharmacol, 2020 Mar 25;250:112461.
    PMID: 31830549 DOI: 10.1016/j.jep.2019.112461
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally.

    AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.

    MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.

    RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.

    CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.

    Matched MeSH terms: Rats, Inbred SHR
  19. Khan MA, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Kazi RN, et al.
    Kidney Blood Press Res, 2009;32(5):349-59.
    PMID: 19844130 DOI: 10.1159/000249149
    This study investigated the impact of hypertension combined with diabetic nephropathy on rat renal alpha(1)-adrenoceptor subtype composition.
    Matched MeSH terms: Rats, Inbred SHR
  20. Chay SY, Salleh A, Sulaiman NF, Zainal Abidin N, Hanafi MA, Zarei M, et al.
    Food Funct, 2018 Mar 01;9(3):1657-1671.
    PMID: 29469915 DOI: 10.1039/c7fo01769c
    Winged bean seed (WBS) is an underutilized tropical crop. The current study evaluates its potential to reduce blood pressure (BP) in spontaneously hypertensive rats and finds that it reduces BP significantly, in a dose-dependent manner. Five peptides with the sequences, RGVFPCLK, TQLDLPTQ, EPALVP, MRSVVT and DMKP, have been characterized in terms of their stability against ACE via in vitro and in silico modelling. All peptides exhibited IC50 values between 0.019 and 6.885 mM and various inhibitory modes, including substrate, prodrug and true inhibitor modes. The toxicity status of non-Current Good Manufacturing Practice (non-CGMP) peptides is evaluated and the results show that such peptides are toxic, and thus are not suitable to be tested in animals, particularly in repeated-dose studies. In short, WBS hydrolysate demonstrated in vitro ACE inhibitory properties and in vivo blood pressure lowering efficacy in rat models, fostering its potential as a functional food ingredient. Non-CGMP grade peptides are toxic and unfit for testing in animal models.
    Matched MeSH terms: Rats, Inbred SHR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links