Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC
    Mol Biotechnol, 2023 Nov;65(11):1737-1749.
    PMID: 36971996 DOI: 10.1007/s12033-023-00725-y
    Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
    Matched MeSH terms: Recombinant Proteins/chemistry
  2. Wong RS, Alias NNM, Ong EBB, Liew MWO
    Methods Mol Biol, 2023;2617:189-200.
    PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13
    Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
    Matched MeSH terms: Recombinant Proteins/chemistry
  3. Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al.
    Molecules, 2021 Sep 20;26(18).
    PMID: 34577167 DOI: 10.3390/molecules26185696
    Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)-AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (-31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (-60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
    Matched MeSH terms: Recombinant Proteins/chemistry
  4. Muhammed NS, Hussin N, Lim AS, Jonet MA, Mohamad SE, Jamaluddin H
    Protein J, 2021 06;40(3):419-435.
    PMID: 33870461 DOI: 10.1007/s10930-021-09986-5
    Acinetobacter baumannii is a ubiquitous bacteria that is increasingly becoming a formidable nosocomial pathogen. Due to its clinical relevance, studies on the bacteria's secretory molecules especially extracellular proteases are of interest primarily in relation to the enzyme's role in virulence. Besides, favorable properties that extracellular proteases possess may be exploited for commercial use thus there is a need to investigate extracellular proteases from Acinetobacter baumannii to gain insights into their catalytic properties. In this study, an extracellular subtilisin-like serine protease from Acinetobacter baumannii designated as SPSFQ that was isolated from fermented food was recombinantly expressed and characterized. The mature catalytically active form of SPSFQ shared a high percentage sequence identity of 99% to extracellular proteases from clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae as well as a moderately high percentage identity to other bacterial proteases with known keratinolytic and collagenolytic activity. The homology model of mature SPSFQ revealed its structure is composed of 10 β-strands, 8 α-helices, and connecting loops resembling a typical architecture of subtilisin-like α/β motif. SPSFQ is catalytically active at an optimum temperature of 40 °C and pH 9. Its activity is stimulated in the presence of Ca2+ and severely inhibited in the presence of PMSF. SPSFQ also displayed the ability to degrade several tissue-associated protein substrates such as keratin, collagen, and fibrin. Accordingly, our study shed light on the catalytic properties of a previously uncharacterized extracellular serine protease from Acinetobacter baumannii that warrants further investigations into its potential role as a virulence factor in pathogenicity and commercial applications.
    Matched MeSH terms: Recombinant Proteins/chemistry
  5. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Recombinant Proteins/chemistry
  6. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Recombinant Proteins/chemistry
  7. Selvaraju G, Leow TC, Salleh AB, Normi YM
    Molecules, 2020 Dec 09;25(24).
    PMID: 33316879 DOI: 10.3390/molecules25245797
    Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-β-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide-protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.
    Matched MeSH terms: Recombinant Proteins/chemistry
  8. Jaafar NR, Khoiri NM, Ismail NF, Mahmood NAN, Abdul Murad AM, Abu Bakar FD, et al.
    Enzyme Microb Technol, 2020 Oct;140:109625.
    PMID: 32912685 DOI: 10.1016/j.enzmictec.2020.109625
    Endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1 (Blg32) composed of 284 amino acids with a predicted molecular mass of 31.6 kDa is expressed in Escherichia coli and purified to homogeneity. Herein, Blg32 characteristics, substrates and product specificity as well as structural traits that might be involved in the production of sugar molecules are analysed. This enzyme functions optimally at the temperature of 70 °C, pH value of 8.0 with its catalytic activity strongly enhanced by Mn2+. Remarkably, the purified enzyme is highly stable in high temperature and alkaline conditions. It exhibits the highest activity on laminarin (376.73 U/mg) followed by curdlan and yeast β-glucan. Blg32 activity increased by 62% towards soluble substrate (laminarin) compared to insoluble substrate (curdlan). Hydrolytic products of laminarin were oligosaccharides with degree of polymerisation (DP) of 1 to 5 with the main product being laminaritriose (DP3). This suggests that the active site of Blg32 could recognise up to five glucose units. High concentration of Blg32 mainly produces glucose whilst low concentration of Blg32 yields oligosaccharides with different DP (predominantly DP3). A theoretical structural model of Blg32 was constructed and structural analysis revealed that Trp156 is involved in multiple hydrophobic stacking interactions. The amino acid was predicted to participate in substrate recognition and binding. It was also exhibited that catalytic groove of Blg32 has a narrow angle, thus limiting the substrate binding reaction. All these properties and knowledge of the subsites are suggested to be related to the possible mode of action of how Blg32 produces glucooligosaccharides.
    Matched MeSH terms: Recombinant Proteins/chemistry
  9. Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R
    Int J Biol Macromol, 2020 Sep 15;159:577-589.
    PMID: 32380107 DOI: 10.1016/j.ijbiomac.2020.04.262
    Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.
    Matched MeSH terms: Recombinant Proteins/chemistry
  10. Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Rahman RNZRA
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731607 DOI: 10.3390/molecules25153430
    A comparative structure analysis between space- and an Earth-grown T1 recombinant lipase from Geobacillus zalihae had shown changes in the formation of hydrogen bonds and ion-pair interactions. Using the space-grown T1 lipase validated structure having incorporated said interactions, the recombinant T1 lipase was re-engineered to determine the changes brought by these interactions to the structure and stability of lipase. To understand the effects of mutation on T1 recombinant lipase, five mutants were developed from the structure of space-grown T1 lipase and biochemically characterized. The results demonstrate an increase in melting temperature up to 77.4 °C and 76.0 °C in E226D and D43E, respectively. Moreover, the mutated lipases D43E and E226D had additional hydrogen bonds and ion-pair interactions in their structures due to the improvement of stability, as observed in a longer half-life and an increased melting temperature. The biophysical study revealed differences in β-Sheet percentage between less stable (T118N) and other mutants. As a conclusion, the comparative analysis of the tertiary structure and specific residues associated with ion-pair interactions and hydrogen bonds could be significant in revealing the thermostability of an enzyme with industrial importance.
    Matched MeSH terms: Recombinant Proteins/chemistry
  11. Li XP, Lin D, Zhang Y, Chen SQ, Bai HQ, Zhang SN, et al.
    Trop Biomed, 2020 Mar 01;37(1):116-126.
    PMID: 33612723
    Several bioactive molecules isolated from the saliva of blood-sucking arthropods, such as mosquitoes, have been shown to exhibit potential anticoagulant function. We have previously identified a 30kDa allergen named Aegyptin-like protein (alALP), which is highly homologous to Aegyptin, from the salivary glands of female Aedes albopictus (Asian tiger mosquito). In this study, we identified the conserved functional domain of alALP by using bioinformatic tools, and expressed the His-tagged alALP recombinant protein in sf9 insect cells by generation and transfection of a baculoviral expression plasmid carrying the fulllength cDNA of alALP. We purified this recombinant protein and examined its function on the inhibition of blood coagulation. The results showed that the purified His-alALP prolonged the Activated Partial Thromboplastin Time (APTT), Prothrombin Time (PT) and Thrombin Time (TT) in vitro as well as the Bleeding Time (BT) in vivo, which suggest that alALP could be a novel anticoagulant.
    Matched MeSH terms: Recombinant Proteins/chemistry
  12. Oyeleye AO, Mohd Yusoff SF, Abd Rahim IN, Leow ATC, Saidi NB, Normi YM
    PLoS One, 2020;15(10):e0241074.
    PMID: 33091044 DOI: 10.1371/journal.pone.0241074
    Conventional refolding methods are associated with low yields due to misfolding and high aggregation rates or very dilute proteins. In this study, we describe the optimization of the conventional methods of reverse dilution and affinity chromatography for obtaining high yields of a cysteine rich recombinant glycoside hydrolase family 19 chitinase from Streptomyces griseus HUT6037 (SgChiC). SgChiC is a potential biocontrol agent and a reference enzyme in the study and development of chitinases for various applications. The overexpression of SgChiC was previously achieved by periplasmic localization from where it was extracted by osmotic shock and then purified by hydroxyapatite column chromatography. In the present study, the successful refolding and recovery of recombinant SgChiC (r-SgChiC) from inclusion bodies (IB) by reverse dilution and column chromatography methods is respectively described. Approximately 8 mg of r-SgChiC was obtained from each method with specific activities of 28 and 52 U/mg respectively. These yields are comparable to that obtained from a 1 L culture volume of the same protein isolated from the periplasmic space of E. coli BL21 (DE3) as described in previous studies. The higher yields obtained are attributed to the successful suppression of aggregation by a stepwise reduction of denaturant from high, to intermediate, and finally to low concentrations. These methods are straight forward, requiring the use of fewer refolding agents compared with previously described refolding methods. They can be applied to the refolding of other cysteine rich proteins expressed as inclusion bodies to obtain high yields of actively folded proteins. This is the first report on the recovery of actively folded SgChiC from inclusion bodies.
    Matched MeSH terms: Recombinant Proteins/chemistry
  13. Kwan SH, Ismail MN
    Biomed Chromatogr, 2019 Dec;33(12):e4686.
    PMID: 31452214 DOI: 10.1002/bmc.4686
    Researchers frequently use two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D-PAGE method, which 'inverts' the dimension of protein separation of the conventional 2D-PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first-dimension separation was conducted on a gel-free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second-dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D-PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D-PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D-PAGE. Overall, the i2D-PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.
    Matched MeSH terms: Recombinant Proteins/chemistry
  14. Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, et al.
    Protein Expr Purif, 2019 12;164:105462.
    PMID: 31351992 DOI: 10.1016/j.pep.2019.105462
    The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
    Matched MeSH terms: Recombinant Proteins/chemistry
  15. Liew KJ, Ngooi CY, Shamsir MS, Sani RK, Chong CS, Goh KM
    Protein Expr Purif, 2019 12;164:105464.
    PMID: 31376486 DOI: 10.1016/j.pep.2019.105464
    Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.
    Matched MeSH terms: Recombinant Proteins/chemistry
  16. Teo SC, Liew KJ, Shamsir MS, Chong CS, Bruce NC, Chan KG, et al.
    Int J Mol Sci, 2019 May 09;20(9).
    PMID: 31075847 DOI: 10.3390/ijms20092284
    A halo-thermophilic bacterium, Roseithermus sacchariphilus strain RA (previously known as Rhodothermaceae bacterium RA), was isolated from a hot spring in Langkawi, Malaysia. A complete genome analysis showed that the bacterium harbors 57 glycoside hydrolases (GHs), including a multi-domain xylanase (XynRA2). The full-length XynRA2 of 813 amino acids comprises a family 4_9 carbohydrate-binding module (CBM4_9), a family 10 glycoside hydrolase catalytic domain (GH10), and a C-terminal domain (CTD) for type IX secretion system (T9SS). This study aims to describe the biochemical properties of XynRA2 and the effects of CBM truncation on this xylanase. XynRA2 and its CBM-truncated variant (XynRA2ΔCBM) was expressed, purified, and characterized. The purified XynRA2 and XynRA2ΔCBM had an identical optimum temperature at 70 °C, but different optimum pHs of 8.5 and 6.0 respectively. Furthermore, XynRA2 retained 94% and 71% of activity at 4.0 M and 5.0 M NaCl respectively, whereas XynRA2ΔCBM showed a lower activity (79% and 54%). XynRA2 exhibited a turnover rate (kcat) of 24.8 s-1, but this was reduced by 40% for XynRA2ΔCBM. Both the xylanases hydrolyzed beechwood xylan predominantly into xylobiose, and oat-spelt xylan into a mixture of xylo-oligosaccharides (XOs). Collectively, this work suggested CBM4_9 of XynRA2 has a role in enzyme performance.
    Matched MeSH terms: Recombinant Proteins/chemistry
  17. Khan AH, Noordin R
    Biotechnol Prog, 2019 03;35(2):e2752.
    PMID: 30457225 DOI: 10.1002/btpr.2752
    Homogeneously glycosylated proteins are essential for analyzing the structure of N-glycans, studying their consequences inside cells, and developing therapeutic glycoproteins. However, the isolation of glycoproteins with homogeneous glycans from human is difficult since glycoforms slightly differ from each other with respect to molecular weight and charge. Microbial expression systems have numerous benefits in expression technology and have gained great attention, because they are more adaptable to the biotechnology industry. While selecting an expression host, the glycosylation pattern must be taken into account, because glycosylation strongly depends on cellular production system and selected production clone. This review discussed the technological developments in glycoengineering of microbial expression systems for humanizing the glycosylation profile and highlighted the expression potential of Leishmania expression system. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2752, 2019.
    Matched MeSH terms: Recombinant Proteins/chemistry
  18. Wahab AFFA, Abdul Karim NA, Ling JG, Hasan NS, Yong HY, Bharudin I, et al.
    Protein Expr Purif, 2019 02;154:52-61.
    PMID: 30261309 DOI: 10.1016/j.pep.2018.09.014
    Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-β-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.
    Matched MeSH terms: Recombinant Proteins/chemistry
  19. Batumalaie K, Khalili E, Mahat NA, Huyop F, Wahab RA
    Biochimie, 2018 Sep;152:198-210.
    PMID: 30036604 DOI: 10.1016/j.biochi.2018.07.011
    Spectroscopic and calorimetric methods were employed to assess the stability and the folding aspect of a novel recombinant alkaline-stable lipase KV1 from Acinetobacter haemolyticus under varying pH and temperature. Data on far ultraviolet-circular dichroism of recombinant lipase KV1 under two alkaline conditions (pH 8.0 and 12.0) at 40 °C reveal strong negative ellipticities at 208, 217, 222 nm, implying its secondary structure belonging to a α + β class with 47.3 and 39.0% ellipticity, respectively. Results demonstrate that lipase KV1 adopts its most stable conformation at pH 8.0 and 40 °C. Conversely, the protein assumes a random coil structure at pH 4.0 and 80 °C, evident from a strong negative peak at ∼ 200 nm. This blue shift suggests a general decline in enzyme activity in conjunction with the partially or fully unfolded state that invariably exposed more hydrophobic surfaces of the lipase protein. The maximum emission at ∼335 nm for pH 8.0 and 40 °C indicates the adoption of a favorable protein conformation with a high number of buried tryptophan residues, reducing solvent exposure. Appearance of an intense Amide I absorption band at pH 8.0 corroborates an intact secondary structure. A lower enthalpy value for pH 4.0 over pH 8.0 and 12.0 in the differential scanning calorimetric data corroborates the stability of the lipase at alkaline conditions, while a low Km (0.68 ± 0.03 mM) for tributyrin verifies the high affinity of lipase KV1 for the substrate. The data, herein offer useful insights into future structure-based tunable catalytic activity of lipase KV1.
    Matched MeSH terms: Recombinant Proteins/chemistry
  20. Chua LH, Tan SC, Liew MWO
    J Biotechnol, 2018 Jun 20;276-277:34-41.
    PMID: 29679607 DOI: 10.1016/j.jbiotec.2018.04.012
    An intensified process was developed that enables high level production of recombinant core streptavidin (cSAV), a non-glycosylated tetrameric protein utilised in a wide range of applications. A pH-stat fed-batch feeding strategy was employed to achieve high-cell-density and improve volumetric yield of cSAV which was expressed as inclusion bodies (IBs). The effect of induction at different cell densities (OD 20, 60 and 100) on volumetric and specific yield were then studied. Highest volumetric yield of cSAV (1550 mg L-1) was obtained from induction at OD 100 without significant reductions in specific yield. To recover active cSAV from IBs, the possibility of refolding using a temperature-based refolding method was investigated. Refolded cSAV obtained from temperature-based refolding were then compared against cSAV refolded with conventional dialysis and dilution methods using quantitative and qualitative metrics. The temperature-based refolding method was found to improve the yield of cSAV by 6-18% in comparison to conventional methods without compromising quality. Intensification was achieved by reductions in process volumes and a more concentrated product stream. Using the newly developed process, the volumetric yield of cSAV IBs was improved by thirty-six fold in comparison to low-cell-density shake flask cultivation, and 33% of cSAV can be recovered from IBs at 90% purity.
    Matched MeSH terms: Recombinant Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links