METHODS: This prospective controlled study included 50 patients with idiopathic OAT and 50 fertile men who served as controls. All patients underwent a comprehensive medical assessment. Patients and controls received 200 mg of oral CoQ10 once daily for 3 months. Semen and blood were collected and analyzed for sperm parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity, catalase, sperm DNA fragmentation (SDF), and serum hormonal profile.
RESULTS: The administration of CoQ10 to patients with idiopathic OAT significantly improved sperm quality and seminal antioxidant status and significantly reduced total ROS and SDF levels compared to pretreatment values.
CONCLUSION: CoQ10, at a dose of 200 mg/day for 3 months, may be a potential therapy for infertile patients with idiopathic OAT, as it improved sperm parameters and reduced OS and SDF in these patients.
MATERIALS AND METHODS: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test.
RESULTS: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups.
CONCLUSION: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.
METHODS: A cross-sectional study was conducted among male farmers from 3 different communities in Sabah, Malaysia. A total of 152 farmers participated in this study of whom 62 farmers had been exposed to either paraquat or malathion or both to varying extents. Questionnaires were designed to record a history of pesticides exposure and other potential risk factors among farmers. All semen samples were collected, processed and analyzed by qualified personnel based on WHO guidelines. Volume, pH, sperm concentration, motility, morphology and WBC count were examined and recorded. The association between pesticide exposure and semen parameters was highly significant.
RESULTS: The mean values of volume, pH, sperm concentration, motility, and WBC count were significantly less in the exposed group than in compared with the non-exposed group, with p<0.005. Those who were exposed to pesticides had greater risk of having abnormal semen parameters than those in with the non exposed group, with p values of less than 0.05. The comparison between semen qualities such as lower sperm count, motility and higher percentage of sperm abnormality of those exposed to different types of pesticides (paraquat and malathion) showed no significant differences.
CONCLUSION: The results showed a significant decline in semen quality with a decline in sperm count, motility and higher percent of teratospermia among subjects with pesticide exposure, and those who were exposed to pesticides had significantly 3 to 9 times greater risk of having abnormal semen parameters.
MATERIALS AND METHODS: In this case-control study, sixty-five infertile patients with idiopathic OA and forty fertile men (control) were included. All participants underwent semen analysis based on the World Health Organization guidelines (5th edition, 2010). Patients received CoQ10 at the dose of 200 mg/d orally for three months. Seminal plasma CoQ10, total antioxidant capacity (TAC), total reactive oxygen species (ROS), glutathione peroxidase (GPx), and SDF levels were measured in controls (baseline) and infertile patients pre- and post-CoQ10 treatment.
RESULTS: CoQ10 treatment for three months significantly improved sperm concentration (p<0.05), progressive motility (p<0.05), total motility (p<0.01), seminal fluid CoQ10 concentration (p<0.001), TAC (p<0.001), and GPx (p<0.001) levels in infertile men with OA. Further, ROS level (p<0.05) and SDF percentage (p<0.001) were reduced in OA patients as compared to the baseline. CoQ10 levels also correlated positively with sperm concentration (r=0.48, p=0.01) and total motility (r=0.59, p=0.003) while a negative correlation was recorded between SDF and sperm motility (r=-0.54, p=0.006).
CONCLUSIONS: CoQ10 supplementation for three months could improve semen parameters, oxidative stress markers and reduce SDF in infertile men with idiopathic OA.