Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Ismail MI, Wei TS, Hair-Bejo M, Omar AR
    Arch Virol, 2020 Dec;165(12):2777-2788.
    PMID: 32964293 DOI: 10.1007/s00705-020-04812-2
    Besides the vaccine strains, the Malaysian variant (MV) and QX-like are the predominant IBVs detected on commercial poultry farms. These two virus strains are distinct based on genomic and pathogenicity studies. In this study, we determined the sequence of the S1 gene and compared the pathogenicity of serial passage 70 (P70) of Malaysian QX-like (QX/P70) and MV (MV/P70) strains with that of their respective wild-type viruses. The nucleotide and amino acid sequences of the complete S1 genes of QX/P70 and MV/P70 showed 1.4 to 1.6% and 3.0 to 3.3% variation, respectively, when compared to the wild-type virus. Most of the mutations were insertions and substitutions in the hypervariable regions (HVRs), primarily in HVR 3. Furthermore, selection pressure analysis showed that both viruses are under purifying selection. A pathogenicity study in specific-pathogen-free (SPF) chickens showed a reduction in respiratory and kidney lesions in chickens inoculated with MV/P70, but not with QX/P70, when compared to the respective wild-type viruses. However, MV/P70 is still pathogenic and can cause ciliary damage. In conclusion, the MV IBV strain is more responsive than the QX-like IBV strain following the attenuation process used for the development of a live attenuated IBV vaccine.
    Matched MeSH terms: Sequence Analysis, Protein
  2. Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S
    BMC Genomics, 2010;11:76.
    PMID: 20113487 DOI: 10.1186/1471-2164-11-76
    Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins.
    Matched MeSH terms: Sequence Analysis, Protein
  3. Kumar S
    BMC Res Notes, 2015;8:9.
    PMID: 25595103 DOI: 10.1186/s13104-015-0976-4
    Cytochrome P450s (CYPs) are important heme-containing proteins, well known for their monooxygenase reaction. The human cytochrome P450 4X1 (CYP4X1) is categorized as "orphan" CYP because of its unknown function. In recent studies it is found that this enzyme is expressed in neurovascular functions of the brain. Also, various studies have found the expression and activity of orphan human cytochrome P450 4X1 in cancer. It is found to be a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4X1 remain unclear.
    Matched MeSH terms: Sequence Analysis, Protein
  4. Wahab HA, Ahmad Khairudin NB, Samian MR, Najimudin N
    BMC Struct Biol, 2006;6:23.
    PMID: 17076907
    Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4-55 PHA synthase 1 (PhaC1P.sp USM 4-55).
    Matched MeSH terms: Sequence Analysis, Protein
  5. Ng XY, Rosdi BA, Shahrudin S
    Biomed Res Int, 2015;2015:212715.
    PMID: 25802839 DOI: 10.1155/2015/212715
    This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs) which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM-) LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.
    Matched MeSH terms: Sequence Analysis, Protein/methods
  6. Tung CH, Chen CW, Guo RC, Ng HF, Chu YW
    Biomed Res Int, 2016;2016:9480276.
    PMID: 27610389 DOI: 10.1155/2016/9480276
    Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM) based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC) higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.
    Matched MeSH terms: Sequence Analysis, Protein/methods*
  7. Yung-Hung RL, Ismail A, Lim TS, Choong YS
    Biochem Biophys Res Commun, 2011 Nov 18;415(2):229-34.
    PMID: 21982766 DOI: 10.1016/j.bbrc.2011.09.116
    Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.
    Matched MeSH terms: Sequence Analysis, Protein
  8. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I
    Biochem Pharmacol, 2014 Oct 1;91(3):409-16.
    PMID: 25064255 DOI: 10.1016/j.bcp.2014.07.001
    Presynaptic neurotoxins are one of the major components in Bungarus venom. Unlike other Bungarus species that have been studied, β-bungarotoxin has never been isolated from Bungarus fasciatus venom. It was hypothesized that the absence of β-bungarotoxin in this species was due to divergence during evolution prior to evolution of β-bungarotoxin. In this study, we have isolated a β-bungarotoxin isoform we named P-elapitoxin-Bf1a by using gel filtration, cation-exchange and reverse-phase chromatography from Malaysian B. fasciatus venom. The toxin consists of two heterogeneous subunits, subunit A and subunit B. LCMS/MS data showed that subunit A was homologous to acidic phospholipase A2 subunit A3 from Bungarus candidus and B. multicinctus venoms, whereas subunit B was homologous with subunit B1 from B. fasciatus venom that was previously detected by cDNA cloning. The toxin showed concentration- and time-dependent reduction of indirect-twitches without affecting contractile responses to ACh, CCh or KCl at the end of experiment in the chick biventer preparation. Toxin modification with 4-BPB inhibited the neurotoxic effect suggesting the importance of His-48. Tissue pre-incubation with monovalent B. fasciatus (BFAV) or neuro-polyvalent antivenom (NPV), at the recommended titer, was unable to inhibit the twitch reduction induced by the toxin. This study indicates that Malaysian B. fasciatus venom has a unique β-bungarotoxin isoform which was not neutralized by antivenoms. This suggests that there might be other presynaptic neurotoxins present in the venom and there is a variation in the enzymatic neurotoxin composition in venoms from different localities.
    Matched MeSH terms: Sequence Analysis, Protein
  9. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
    Matched MeSH terms: Sequence Analysis, Protein
  10. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Sequence Analysis, Protein
  11. Razmara J, Deris SB, Parvizpour S
    Comput Biol Med, 2013 Oct;43(10):1614-21.
    PMID: 24034753 DOI: 10.1016/j.compbiomed.2013.07.022
    The structural comparison of proteins is a vital step in structural biology that is used to predict and analyse a new unknown protein function. Although a number of different techniques have been explored, the study to develop new alternative methods is still an active research area. The present paper introduces a text modelling-based technique for the structural comparison of proteins. The method models the secondary and tertiary structure of proteins in two linear sequences and then applies them to the comparison of two structures. The technique used for pairwise comparison of the sequences has been adopted from computational linguistics and its well-known techniques for analysing and quantifying textual sequences. To this end, an n-gram modelling technique is used to capture regularities between sequences, and then, the cross-entropy concept is employed to measure their similarities. Several experiments are conducted to evaluate the performance of the method and compare it with other commonly used programs. The assessments for information retrieval evaluation demonstrate that the technique has a high running speed, which is similar to other linear encoding methods, such as 3D-BLAST, SARST, and TS-AMIR, whereas its accuracy is comparable to CE and TM-align, which are high accuracy comparison tools. Accordingly, the results demonstrate that the algorithm has high efficiency compared with other state-of-the-art methods.
    Matched MeSH terms: Sequence Analysis, Protein/methods*
  12. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
    Matched MeSH terms: Sequence Analysis, Protein/methods*
  13. Ho CL, Nguyen PD, Harikrishna JA, Rahim RA
    DNA Seq., 2008 Feb;19(1):73-7.
    PMID: 17852357
    The vacuolar-type H+ -ATPase (V-ATPase) is a multimeric enzyme with diverse functions in plants such as nutrient transport, flowering, stress tolerance, guard cell movement and development. A partial sequence of V-ATPase proteolipid was identified among the expressed sequence tags (ESTs) generated from Acanthus ebracteatus, and selected for full-length sequencing. The 876-nucleotide cDNA consists of an open reading frame of 165 amino acids. The deduced amino acid sequence displays high similarity (81%) with its homologs from Arabidopsis thaliana, Avecinnia marina and Gossypium hirsutum with the four transmembrane domains characteristics of the 16 kDa proteolipid subunit c of V-ATPase well conserved in this protein. Southern analysis revealed the existence of several members of proteolipid subunit c of V-ATPase in A. ebracteatus. The mRNA of this gene was detected in leaf, floral, stem and root tissues, however, the expression level was lower in stem and root tissues.
    Matched MeSH terms: Sequence Analysis, Protein
  14. Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, et al.
    Emerg Infect Dis, 2010 Dec;16(12):1990-3.
    PMID: 21122240 DOI: 10.3201/eid1612.091790
    We isolated and characterized Nipah virus (NiV) from Pteropus vampyrus bats, the putative reservoir for the 1998 outbreak in Malaysia, and provide evidence of viral recrudescence. This isolate is monophyletic with previous NiVs in combined analysis, and the nucleocapsid gene phylogeny species.
    Matched MeSH terms: Sequence Analysis, Protein
  15. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):929-33.
    PMID: 22361112 DOI: 10.1016/j.fsi.2012.02.011
    This study reports the first full length gene of interferon related developmental regulator-1 (designated as MrIRDR-1), identified from the transcriptome of Macrobrachium rosenbergii. The complete gene sequence of the MrIRDR-1 is 2459 base pair long with an open reading frame of 1308 base pairs and encoding a predicted protein of 436 amino acids with a calculated molecular mass of 48 kDa. The MrIRDR-1 protein contains a long interferon related developmental regulator super family domain between 30 and 330. The mRNA expressions of MrIRDR-1 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) infected M. rosenbergii were examined using qRT-PCR. The MrIRDR-1 is highly expressed in hepatopancreas along with all other tissues (walking leg, gills, muscle, haemocyte, pleopods, brain, stomach, intestine and eye stalk). After IHHNV infection, the expression is highly upregulated in hepatopancreas. This result indicates an important role of MrIRDR-1 in prawn defense system.
    Matched MeSH terms: Sequence Analysis, Protein/veterinary
  16. Ramli ANM, Manas NHA, Hamid AAA, Hamid HA, Illias RM
    Food Chem, 2018 Nov 15;266:183-191.
    PMID: 30381175 DOI: 10.1016/j.foodchem.2018.05.125
    Cysteine proteases in pineapple (Ananas comosus) plants are phytotherapeutical agents that demonstrate anti-edematous, anti-inflammatory, anti-thrombotic and fibrinolytic activities. Bromelain has been identified as an active component and as a major protease of A. comosus. Bromelain has gained wide acceptance and compliance as a phytotherapeutical drug. The proteolytic fraction of pineapple stem is termed stem bromelain, while the one presents in the fruit is known as fruit bromelain. The amino acid sequence and domain analysis of the fruit and stem bromelains demonstrated several differences and similarities of these cysteine protease family members. In addition, analysis of the modelled fruit (BAA21848) and stem (CAA08861) bromelains revealed the presence of unique properties of the predicted structures. Sequence analysis and structural prediction of stem and fruit bromelains of A. comosus along with the comparison of both structures provides a new insight on their distinct properties for industrial application.
    Matched MeSH terms: Sequence Analysis, Protein
  17. Othman R, Wahab HA, Yusof R, Rahman NA
    In Silico Biol. (Gedrukt), 2007;7(2):215-24.
    PMID: 17688447
    Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.
    Matched MeSH terms: Sequence Analysis, Protein
  18. Panda S, Banik U, Adhikary AK
    Infect Genet Evol, 2020 11;85:104439.
    PMID: 32585339 DOI: 10.1016/j.meegid.2020.104439
    Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
    Matched MeSH terms: Sequence Analysis, Protein
  19. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, et al.
    Interdiscip Sci, 2018 Mar;10(1):157-168.
    PMID: 27475956 DOI: 10.1007/s12539-016-0180-9
    We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
    Matched MeSH terms: Sequence Analysis, Protein
  20. Shariff FM, Rahman RN, Basri M, Salleh AB
    Int J Mol Sci, 2011;12(5):2917-34.
    PMID: 21686158 DOI: 10.3390/ijms12052917
    A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5-99.2%). Polymerase chain reaction (PCR) cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF) of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55-80 °C and at a pH of 6-10. The L2 lipase had a melting temperature (Tm) of 59.04 °C when analyzed by circular dichroism (CD) spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA) (100%), whereas phenylmethylsulfonyl fluoride (PMSF), pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT) inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.
    Matched MeSH terms: Sequence Analysis, Protein
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links