Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Rodriguez JJ, Horvath CM
    Viral Immunol, 2004;17(2):210-9.
    PMID: 15279700
    Interferon (IFN) can activate Signal Transducer and Activator of Transcription (STAT) proteins to establish a cellular antiviral response and inhibit virus replication. Many viruses have evolved strategies to inhibit this antiviral mechanism, but paramyxoviruses are unique in their abilities to directly target the IFN-responsive STAT proteins. Hendra virus and Nipah virus (Henipaviruses) are recently emerged paramyxoviruses that are the causative agents of fatal disease outbreaks in Australia and peninsular Malaysia. Similar to other paramyxoviruses, Henipaviruses inhibit IFN signal transduction through a virus-encoded protein called V. Recent studies have shown that Henipavirus V proteins target STAT proteins by inducing the formation of cytoplasmically localized high molecular weight STAT-containing complexes. This sequestration of STAT1 and STAT2 prevents STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion, they represent logical targets for therapeutics directed against Henipavirus epidemics.
    Matched MeSH terms: Signal Transduction/physiology
  2. Muid S, Froemming GR, Ali AM, Nawawi H
    Malays J Pathol, 2013 Dec;35(2):165-76.
    PMID: 24362480 MyJurnal
    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.
    Matched MeSH terms: Signal Transduction/physiology*
  3. Yap LF, Velapasamy S, Lee HM, Thavaraj S, Rajadurai P, Wei W, et al.
    J Pathol, 2015 Feb;235(3):456-65.
    PMID: 25294670 DOI: 10.1002/path.4460
    Undifferentiated nasopharyngeal carcinoma (NPC) is a highly metastatic disease that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the contribution of lysophosphatidic acid (LPA) signalling to the pathogenesis of NPC. Here we demonstrate two distinct functional roles for LPA in NPC. First, we show that LPA enhances the migration of NPC cells and second, that it can inhibit the activity of EBV-specific cytotoxic T cells. Focusing on the first of these phenotypes, we show that one of the LPA receptors, LPA receptor 5 (LPAR5), is down-regulated in primary NPC tissues and that this down-regulation promotes the LPA-induced migration of NPC cell lines. Furthermore, we found that EBV infection or ectopic expression of the EBV-encoded LMP2A was sufficient to down-regulate LPAR5 in NPC cell lines. Our data point to a central role for EBV in mediating the oncogenic effects of LPA in NPC and identify LPA signalling as a potential therapeutic target in this disease.
    Matched MeSH terms: Signal Transduction/physiology*
  4. Lee HM, Lo KW, Wei W, Tsao SW, Chung GTY, Ibrahim MH, et al.
    J Pathol, 2017 05;242(1):62-72.
    PMID: 28240350 DOI: 10.1002/path.4879
    Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1, and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is overexpressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Signal Transduction/physiology
  5. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
    Matched MeSH terms: Signal Transduction/physiology
  6. Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, et al.
    Int J Neurosci, 2021 May;131(5):482-488.
    PMID: 32202188 DOI: 10.1080/00207454.2020.1746308
    Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
    Matched MeSH terms: Signal Transduction/physiology*
  7. Yam MF, Tan CS, Ahmad M, Ruan S
    Am J Chin Med, 2016;44(7):1413-1439.
    PMID: 27785939
    Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text]]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor) had a small effect on the vasorelaxation response. On the other hand, in the presence of Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), tetraethylammonium ([Formula: see text], nonselective calcium activator [Formula: see text] channel blocker), 4-aminopyridine (4-AP, voltage-dependent [Formula: see text] channel blocker), barium chloride ([Formula: see text], inwardly rectifying [Formula: see text] channel blocker), glibenclamide (nonspecific ATP-sensitive [Formula: see text] channel blocker), atropine (muscarinic receptor blocker) and propranolol (β-adrenergic receptor blocker), the vasorelaxant effect significantly reduced the relaxation stimulated by CF. CF was also found to be active in reducing [Formula: see text] release from the sarcoplasmic reticulum and blocking calcium channels.
    Matched MeSH terms: Signal Transduction/physiology
  8. Yin Lee JP, Thomas AJ, Lum SK, Shamsudin NH, Hii LW, Mai CW, et al.
    Surg Oncol, 2021 Jun;37:101536.
    PMID: 33677364 DOI: 10.1016/j.suronc.2021.101536
    INTRODUCTION: Fibroadenomas of the breast present as two phenotypic variants. The usual variety is 5 cm or less in diameter and there is another large variant called giant fibroadenoma which is greater than 5 cm in diameter. Despite of its large size, it is not malignant. The aim of our study is to determine whether this large variant is different from the usual fibroadenoma in terms of its biological pathways and biomarkers.

    METHODS: mRNA was extracted from 44 fibroadenomas and 36 giant fibroadenomas, and transcriptomic profiling was performed to identify up- and down-regulated genes in the giant fibroadenomas as compared to the fibroadenomas.

    RESULTS: A total of 40 genes were significantly up-regulated and 18 genes were significantly down-regulated in the giant fibroadenomas as compared to the fibroadenomas of the breast. The top 5 up-regulated genes were FN1, IL3, CDC6, FGF8 and BMP8A. The top 5 down-regulated genes were TNR, CDKN2A, COL5A1, THBS4 and BMPR1B. The differentially expressed genes (DEGs) were found to be associated with 5 major canonical pathways involved in cell growth (PI3K-AKT, cell cycle regulation, WNT, and RAS signalling) and immune response (JAK-STAT signalling). Further analyses using 3 supervised learning algorithms identified an 8-gene signature (FN1, CDC6, IL23A, CCNA1, MCM4, FLT1, FGF22 and COL5A1) that could distinguish giant fibroadenomas from fibroadenomas with high predictive accuracy.

    CONCLUSION: Our findings demonstrated that the giant fibroadenomas are biologically distinct to fibroadenomas of the breast with overexpression of genes involved in the regulation of cell growth and immune response.

    Matched MeSH terms: Signal Transduction/physiology*
  9. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Signal Transduction/physiology*
  10. Aziz J, Shezali H, Radzi Z, Yahya NA, Abu Kassim NH, Czernuszka J, et al.
    Skin Pharmacol Physiol, 2016;29(4):190-203.
    PMID: 27434176 DOI: 10.1159/000447017
    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks.
    Matched MeSH terms: Signal Transduction/physiology
  11. Ghani NA, Norizan SN, Chan XY, Yin WF, Chan KG
    Sensors (Basel), 2014;14(7):11760-9.
    PMID: 24995373 DOI: 10.3390/s140711760
    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.
    Matched MeSH terms: Signal Transduction/physiology*
  12. Govender N, Senan S, Sage EE, Mohamed-Hussein ZA, Mackeen MM, Wickneswari R
    PLoS One, 2018;13(9):e0203441.
    PMID: 30240391 DOI: 10.1371/journal.pone.0203441
    Jatropha curcas is an oil-rich seed crop with huge potentials for bioenergy production. The inflorescence carries a number of processes that are likely to affect the overall yield potentials; floral development, male-to-female flower ratio, floral abscission and fruit set. In this study, a weighted gene co-expression network analysis which integrates the transcriptome, physical and simple sugar data of J. curcas inflorescence was performed and nine modules were identified by means of hierarchical clustering. Among them, four modules (green4, antiquewhite2, brown2 and lightskyblue4) showed significant correlation to yield factors at p≤0.01. The four modules are categorized into two clusters; cluster 1 of green4 and antiquewhite2 modules correspond to number of flowers/inflorescence, total seed weight/plant, number of seeds/plant, and number of fruits/plant, whereas cluster 2 of brown2 and lightskyblue4 modules correspond to glucose and fructose. Descriptive characterizations of cluster 1 show putative involvement in gibberellin signaling and responses, whereas cluster 2 may have been involved in sugar signaling, signal transductions and regulation of flowerings. Our findings present a list of hub genes for J. curcas yield improvement and reproductive biology enhancement strategies.
    Matched MeSH terms: Signal Transduction/physiology*
  13. Lim R, Adhikari S, Gurusinghe S, Leaw B, Acharya R, Rahman R, et al.
    Placenta, 2015 Aug;36(8):926-31.
    PMID: 26138362 DOI: 10.1016/j.placenta.2015.06.004
    Pre-eclampsia remains a major cause of maternal and fetal morbidity and mortality. Despite intensive research over the last 50 years, significant therapeutic advances have yet to be realised. We recently reported on the role of activin A in the pathophysiology of pre-eclampsia, whereby a pre-eclampsia-like disease state was induced in pregnant mice through activin A infusion. Using the same animal model, the effects of inhibiting activin A signalling on this pre-eclampsia-like disease state have now been assessed with low molecular weight compounds structurally related to activin-receptor-like kinase (ALK) inhibitors.
    Matched MeSH terms: Signal Transduction/physiology*
  14. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al.
    Pharmacol Res, 2015 Jul;97:16-26.
    PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010
    Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
    Matched MeSH terms: Signal Transduction/physiology*
  15. Angelopoulou E, Paudel YN, Shaikh MF, Piperi C
    Pharmacol Res, 2020 08;158:104930.
    PMID: 32445958 DOI: 10.1016/j.phrs.2020.104930
    Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications.
    Matched MeSH terms: Signal Transduction/physiology
  16. Chong ZX, Yeap SK, Ho WY
    Pathol Res Pract, 2021 Mar;219:153326.
    PMID: 33601152 DOI: 10.1016/j.prp.2020.153326
    MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
    Matched MeSH terms: Signal Transduction/physiology
  17. Seow HF, Yip WK, Loh HW, Ithnin H, Por P, Rohaizak M
    Pathol Oncol Res, 2010 Jun;16(2):239-48.
    PMID: 19882362 DOI: 10.1007/s12253-009-9216-3
    Activation of Akt signaling pathway has been documented in various human malignancies, including breast carcinoma. The objective of this study is to determine the incidence of Akt phosphorylation in breast tumours and its relationship with expression of ER-alpha, ER-beta, HER2, Ki-67 and phosphorylated Bcl-2 associated death domain (p-BAD). Immunohistochemical staining was performed to detect these molecules on 43 paraffin-embedded breast tumour tissues with commercially available antibodies. Eighteen (41.9%), 3 (7.0%), 23 (53.5%), 35 (81.4%), 21 (48.8%), 29 (67.4%), and 34 (81.0%) of breast tumours were positive for nuclear ER-alpha, nuclear ER-beta, membranous HER2, cytonuclear p-Akt (Thr308), p-Akt (Ser473), p-BAD and Ki-67, respectively. ER-alpha expression was inversely correlated with HER2 and Ki-67 (P = 0.041 and P = 0.040, respectively). The p-Akt (Ser473) was correlated with increased level of p-BAD (Ser136) (P = 0.012). No relationship of Akt phosphorylation with HER2, ER-alpha or ER-beta was found. The p-Akt (Ser473) immunoreactivity was significantly higher in stage IV than in stage I or II (P = 0.036 or P = 0.009). The higher Ki-67 and lower ER-alpha expression showed an association with patient age of <50 years (P = 0.004) and with positive nodal status (P = 0.033), respectively. Our data suggest that the Akt phosphorylation and inactivation of its downstream target, BAD may play a role in survival of breast cancer cell. This study does not support the simple model of linear HER2/PI3K/Akt pathway in breast cancer.
    Matched MeSH terms: Signal Transduction/physiology
  18. Ng KL, Yap NY, Rajandram R, Small D, Pailoor J, Ong TA, et al.
    Pathology, 2018 Aug;50(5):511-518.
    PMID: 29935727 DOI: 10.1016/j.pathol.2018.03.003
    Better characterisation and understanding of renal cell carcinoma (RCC) development and progression lead to better diagnosis and clinical outcomes. In this study, expression of nuclear factor-kappa B (NF-κB) subunits: p65 (RelA), p105/p50, p100/p52, and cRel in RCC tissue were compared with corresponding normal kidney, along with tumour characteristics and survival outcome. Ninety-six cases of RCC with paired normal kidney were analysed. Clinicopathological data, demographics and survival data were available. Immunohistochemistry (IHC) for NF-κB subtypes was analysed using the Aperio digital pathology system for overall cellular expression and localisation. The prognostic cancer-specific survival value of the subunits in RCC patients was analysed. Approximately 50% of patients had clinical stage T1, with 22 patients having metastases at presentation. RCC subtypes were: clear cell (n = 76); papillary (n = 11); chromophobe (n = 5); clear cell tubulopapillary (n = 3); and one multilocular cystic RCC. Median follow up was 54.5 months (0.2-135), with 28 deaths at time of analysis. NF-κB p65 had higher overall and nuclear expressions, with lower overall and nuclear expressions of p50, p52 and cRel in RCC compared with normal kidney. Higher expressions of p65 (nuclear), p52 (overall and nuclear) and p50 (overall) correlated significantly with worse cancer-specific survival. This is the first large series of analysis of expression of NF-κB subunits in RCC. Especially with regards to the less studied subunits (p52, p50, cRel), our results allow a better understanding the role of NF-κB in RCC development and progression, and may pave the way for future targeted NF-κB subunit specific therapies.
    Matched MeSH terms: Signal Transduction/physiology
  19. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
    Matched MeSH terms: Signal Transduction/physiology
  20. Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, et al.
    Oncogene, 2024 Feb;43(7):495-510.
    PMID: 38168654 DOI: 10.1038/s41388-023-02923-z
    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.
    Matched MeSH terms: Signal Transduction/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links