Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Lowe BG
    Health Phys, 1978 May;34(5):439-44.
    PMID: 568609
    Matched MeSH terms: Soil Pollutants/analysis*
  2. Meier PG, Fook DC, Lagler KF
    Bull Environ Contam Toxicol, 1983 Mar;30(3):351-7.
    PMID: 6850121
    Matched MeSH terms: Soil Pollutants/analysis*
  3. Sahid IB, Teoh SS
    Bull Environ Contam Toxicol, 1994 Feb;52(2):226-30.
    PMID: 8123982
    Matched MeSH terms: Soil Pollutants/analysis*
  4. Razak CN, Salam F, Ampon K, Basri M, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:479-84.
    PMID: 9928128
    Matched MeSH terms: Soil Pollutants/analysis*
  5. Ismail BS, Quirinus L
    Bull Environ Contam Toxicol, 2000 Oct;65(4):530-6.
    PMID: 10960146
    Matched MeSH terms: Soil Pollutants/analysis*
  6. Shutes RB
    Environ Int, 2001 May;26(5-6):441-7.
    PMID: 11392764
    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.
    Matched MeSH terms: Soil Pollutants/analysis*
  7. Abdullah AR, Sinnakkannu S, Tahir NM
    Bull Environ Contam Toxicol, 2001 Jun;66(6):762-9.
    PMID: 11353379
    Matched MeSH terms: Soil Pollutants/analysis*
  8. Ahmed AM, Sulaiman WN
    Environ Manage, 2001 Nov;28(5):655-63.
    PMID: 11568845
    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
    Matched MeSH terms: Soil Pollutants/analysis*
  9. Zain SM, Basri H, Suja F, Jaafar O
    Water Sci Technol, 2002;46(9):303-8.
    PMID: 12448482
    Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.
    Matched MeSH terms: Soil Pollutants/analysis*
  10. Idris A, Saed K
    PMID: 12090284
    Sewage sludge from aerobic treatment plant was found to contain high amounts of heavy metals. Research was carried out to investigate the speciation and leaching behavior of heavy metals when using high temperature melting technology for treatment. This was achieved by conducting a sequential chemical extraction procedure and EP-TOX leaching test. The thermal treatment led to increased shift of metals from organic fraction to residual fraction, indicating that the thermal treatment caused metals in sewage sludge to become stable. Furthermore, results from leaching test revealed that metals were not leached from the final product after thermal treatment and this was verified using US EPA standard limits. Results from this study indicated that melting technology could convert the sludge to product that can be either reused or landfilled without an adverse environmental impact.
    Matched MeSH terms: Soil Pollutants/analysis
  11. Ismail BS, Kalithasan K
    J Environ Sci Health B, 2003 Mar;38(2):133-46.
    PMID: 12617552
    Studies on persistence, mobility and the effect of repeated application of permethrin on its half-life were carried out under field conditions. The half-life of permethrin in the top 20 cm of the soil increased from 11.5 to 23.6 days as the application rates increased from 35 to 140 g ha(-1). Induced by heavier rainfall, more residues moved downward in trial 2 than in trial 1. Repeated applications enhanced degradation rates and mobility of permethrin in the soil. The residue level in the 0-5-cm layer was reduced at day 28 after 17 consecutive applications to a level lower than after 5 applications. The half-life of permethrin was reduced from 15.9 days to 11.2 days after 5 and 17 applications, respectively. The residue reached the 15-20 cm layer much earlier (approximately 3 days after treatment) in soil that received 17 applications as compared to those with two applications.
    Matched MeSH terms: Soil Pollutants/analysis
  12. Ismail BS, Ngan CK, Cheah UB, Abdullah WY
    Bull Environ Contam Toxicol, 2004 Apr;72(4):836-43.
    PMID: 15200001 DOI: 10.1007/s00128-004-0320-5
    Matched MeSH terms: Soil Pollutants/analysis*
  13. Ismail BS, Kalithasan K
    J Environ Sci Health B, 2004 May;39(3):419-29.
    PMID: 15186031
    The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10-15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.
    Matched MeSH terms: Soil Pollutants/analysis*
  14. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
    Matched MeSH terms: Soil Pollutants/analysis*
  15. Halimah M, Tan YA, Ismail BS
    J Environ Sci Health B, 2004;39(5-6):765-77.
    PMID: 15620085
    Four methods were developed for the analysis of fluroxypyr in soil samples from oil palm plantations. The first method involved the extraction of the herbicide with 0.05 M NaOH in methanol followed by purification using acid base partition. The concentrated material was subjected to derivatization and then cleaning process using a florisil column and finally analyzed by gas chromatography (GC) equipped with electron capture detector (ECD). By this method, the recovery of fluroxypyr from the spiked soil ranged from 70 to 104% with the minimum detection limit at 5 microg/kg. The second method involved solid liquid extraction of fluroxypyr using a horizontal shaker followed by quantification using high performance liquid chromatography (HPLC) equipped with UV detector. The recovery of fluroxypyr using this method, ranged from 80 to 120% when the soil was spiked with fluroxypyr at 0.1-0.2 microg/g soil. In the third method, the recovery of fluroxypyr was determined by solid liquid extraction using an ultrasonic bath. The recovery of fluroxypyr at spiking levels of 4-50 microg/L ranged from 88 to 98% with relative standard deviations of 3.0-5.8% with a minimum detection limit of 4 microg/kg. In the fourth method, fluroxypyr was extracted using the solid liquid extraction method followed by the cleaning up step with OASIS HLB (polyvinyl dibenzene). The recovery of fluroxypyr was between 91 and 95% with relative standard deviations of 4.2-6.2%, respectively. The limit of detection in method 4 was further improved to 1 pg/kg. When the weight of soil used was increased 4 fold, the recovery of fluroxypyr at spiking level of 1-50 microg/kg ranged from 82-107% with relative standard deviations of 0.5-4.7%.
    Matched MeSH terms: Soil Pollutants/analysis*
  16. Ahmed OH, Ahmad HM, Musa HM, Rahim AA, Rastan SO
    ScientificWorldJournal, 2005 Jan 21;5:42-9.
    PMID: 15674449
    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.
    Matched MeSH terms: Soil Pollutants/analysis
  17. Ismail BS, Farihah K, Khairiah J
    Bull Environ Contam Toxicol, 2005 Feb;74(2):320-7.
    PMID: 15841973
    Matched MeSH terms: Soil Pollutants/analysis*
  18. Khairiah J, Lim KH, Ahmad-Mahir R, Ismail BS
    Bull Environ Contam Toxicol, 2006 Oct;77(4):608-15.
    PMID: 17123022 DOI: 10.1007/s00128-006-1106-8
    Matched MeSH terms: Soil Pollutants/analysis*
  19. Farahani GH, Sahid IB, Zakaria Z, Kuntom A, Omar D
    Bull Environ Contam Toxicol, 2008 Sep;81(3):294-8.
    PMID: 18587522 DOI: 10.1007/s00128-008-9468-8
    The downward movement of carbofuran in two Malaysian soil types was studied using soil columns. The columns were filled with disturbed and undisturbed soils of either the Bagan Datoh soil (clay) or the Labu soil (sandy clay). The average total percentage of carbofuran in the leachate of the undisturbed Labu soil after 14 days of watering (80.8%) was approximately similar to that of the total amount from the disturbed soil (81.4%). However, carbofuran leaching was observed in the disturbed soil after the fourth day of watering whereas for the undisturbed soil, leaching occurred after the first watering. A similar trend was observed in the Bagan Datoh soil where the residue of carbofuran was detected after the first day of watering in the undisturbed soil column but only at the eighth day of watering in the disturbed soil column. The total percentage carbofuran in the leachate of disturbed and undisturbed soil columns from Bagan Datoh after 14 days of watering was 3.6% and 41.7%, respectively. The study showed that less leaching occurred in soil columns with high organic content such as the Bagan Datoh soil and especially so in disturbed soils where the organic matter was homogeneously mixed in all layers.
    Matched MeSH terms: Soil Pollutants/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links