Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Tabasi M, Alesheikh AA, Sofizadeh A, Saeidian B, Pradhan B, AlAmri A
    Parasit Vectors, 2020 Nov 11;13(1):572.
    PMID: 33176858 DOI: 10.1186/s13071-020-04447-x
    BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task.

    METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.

    RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.

    CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

    Matched MeSH terms: Spatio-Temporal Analysis*
  2. Asghar MA, Khan MJ, Rizwan M, Shorfuzzaman M, Mehmood RM
    Multimed Syst, 2021 Apr 21.
    PMID: 33897112 DOI: 10.1007/s00530-021-00782-w
    Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient's emotions and in monitoring stress levels in real-time. Due to the noisy and non-linear nature of the EEG signal, it is still difficult to understand emotions and can generate large feature vectors. In this article, we have proposed an efficient spatial feature extraction and feature selection method with a short processing time. The raw EEG signal is first divided into a smaller set of eigenmode functions called (IMF) using the empirical model-based decomposition proposed in our work, known as intensive multivariate empirical mode decomposition (iMEMD). The Spatio-temporal analysis is performed with Complex Continuous Wavelet Transform (CCWT) to collect all the information in the time and frequency domains. The multiple model extraction method uses three deep neural networks (DNNs) to extract features and dissect them together to have a combined feature vector. To overcome the computational curse, we propose a method of differential entropy and mutual information, which further reduces feature size by selecting high-quality features and pooling the k-means results to produce less dimensional qualitative feature vectors. The system seems complex, but once the network is trained with this model, real-time application testing and validation with good classification performance is fast. The proposed method for selecting attributes for benchmarking is validated with two publicly available data sets, SEED, and DEAP. This method is less expensive to calculate than more modern sentiment recognition methods, provides real-time sentiment analysis, and offers good classification accuracy.
    Matched MeSH terms: Spatio-Temporal Analysis
  3. Mortaza N, Abu Osman NA, Mehdikhani N
    Eur J Phys Rehabil Med, 2014 Dec;50(6):677-91.
    PMID: 24831570
    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not sufficient and cannot act as a reliable predictor of falls in elderly individuals.
    Matched MeSH terms: Spatio-Temporal Analysis
  4. Tan KK, Nellis S, Zulkifle NI, Sulaiman S, AbuBakar S
    Epidemiol Infect, 2018 10;146(13):1635-1641.
    PMID: 29860959 DOI: 10.1017/S0950268818001425
    Dengue virus type 3 genotype III (DENV-3/III) is widely distributed in most dengue-endemic regions. It emerged in Malaysia in 2008 and autochthonously spread in the midst of endemic DENV-3/I circulation. The spread, however, was limited and the virus did not cause any major outbreak. Spatiotemporal distribution study of DENV-3 over the period between 2005 and 2011 revealed that dengue cases involving DENV-3/III occurred mostly in areas without pre-existing circulating DENV-3. Neutralisation assays performed using sera of patients with the respective infection showed that the DENV-3/III viruses can be effectively neutralised by sera of patients with DENV-3 infection (50% foci reduction neutralisation titres (FRNT50) > 1300). Sera of patients with DENV-1 infection (FRNT50 ⩾ 190), but not sera of patients with DENV-2 infection (FRNT50 ⩽ 50), were also able to neutralise the virus. These findings highlight the possibility that the pre-existing homotypic DENV-3 and the cross-reacting heterotypic DENV-1 antibody responses could play a role in mitigating a major outbreak involving DENV-3/III in the Klang Valley, Malaysia.
    Matched MeSH terms: Spatio-Temporal Analysis
  5. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Spatio-Temporal Analysis
  6. Andrew NL, Bright P, de la Rua L, Teoh SJ, Vickers M
    PLoS One, 2019;14(9):e0223249.
    PMID: 31568527 DOI: 10.1371/journal.pone.0223249
    The coastal zones of Small Island States are hotspots of human habitation and economic endeavour. In the Pacific region, as elsewhere, there are large gaps in understandings of the exposure and vulnerability of people in coastal zones. The 22 Pacific Countries and Territories (PICTs) are poorly represented in global analyses of vulnerability to seaward risks. We combine several data sources to estimate populations to zones 1, 5 and 10 km from the coastline in each of the PICTs. Regional patterns in the proximity of Pacific people to the coast are dominated by Papua New Guinea. Overall, ca. half the population of the Pacific resides within 10 km of the coast but this jumps to 97% when Papua New Guinea is excluded. A quarter of Pacific people live within 1 km of the coast, but without PNG this increases to slightly more than half. Excluding PNG, 90% of Pacific Islanders live within 5 km of the coast. All of the population in the coral atoll nations of Tokelau and Tuvalu live within a km of the ocean. Results using two global datasets, the SEDAC-CIESIN Gridded Population of the World v4 (GPWv4) and the Oak Ridge National Laboratory Landscan differed: Landscan under-dispersed population, overestimating numbers in urban centres and underestimating population in rural areas and GPWv4 over-dispersed the population. In addition to errors introduced by the allocation models of the two methods, errors were introduced as artefacts of allocating households to 1 km x 1 km grid cell data (30 arc-seconds) to polygons. The limited utility of LandScan and GPWv4 in advancing this analysis may be overcome with more spatially resolved census data and the inclusion of elevation above sea level as an important dimension of vulnerability.
    Matched MeSH terms: Spatio-Temporal Analysis*
  7. Keith SA, Maynard JA, Edwards AJ, Guest JR, Bauman AG, van Hooidonk R, et al.
    Proc Biol Sci, 2016 05 11;283(1830).
    PMID: 27170709 DOI: 10.1098/rspb.2016.0011
    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.
    Matched MeSH terms: Spatio-Temporal Analysis
  8. Chong VH, Telisinghe PU, Lim E, Abdullah MS, Idris F, Chong CF
    Asian Pac J Cancer Prev, 2015;16(16):7097-101.
    PMID: 26514496
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is linked to Epstein Barr virus infection and is particularly common in the Far East, particularly among some Chinese groups. Certain ethnicities have been reported to have low incidence of NPC. This study looked at NPC in Brunei Darussalam over a three decade period.

    MATERIALS AND METHODS: The cancer registry from 1986 to 2014 maintained by the State Laboratory was retrospectively reviewed. The age standardized rates (ASR) and the age specific incidence rates (ASIR) were calculated. Non NPC tumors were excluded from the study.

    RESULTS: Altogether, there were a total of 450 NPC cases diagnosed accounting for 4.4% of all total cancer cases over the study period, declining from 10.3% in 1986-1990 to 2.3% in 2011-2014. The most common tumor type was the undifferentiated carcinoma (96.4%). The case characteristics were mean age 50.4 ± 14.4 years old, male 69%, and predominately Malays 74.4%, followed by Chinese 16.7%. The mean age of diagnosis increased over the study period from 45.6 ± 17.1 years (1986-1989) to 54.1 ± 12.5 years (ANOVA, p<0.01 for trend). There were no differences in the mean age of diagnosis between the ethnic groups or genders. The ASR showed a declining trend from 11.1 per 100,000 in 1986-1990 to 5.95 per 100,000 in 2011-2014, similar trends been observedfor both genders. Among the age groups, declining trends were seen in all the other age groups apart from the >70 years group. The overall ASRs for the Malays and Chinese were 7.92/100,000 and 8.83/100,000 respectively, both showing declining trends.

    CONCLUSIONS: The incidence of NPC in Brunei Darussalam is comparable to rates reported from Singapore and Malaysia, but higher than rates reported from the other Southeast Asian nations. Unlike higher rates reported for Chinese compared to the Malays in other countries, the rates between the Malays and Chinese in our study was comparable. Importantly, the ASR is declining overall and for both genders and ethnic groups.

    Matched MeSH terms: Spatio-Temporal Analysis
  9. GBD 2017 Child and Adolescent Health Collaborators, Reiner RC, Olsen HE, Ikeda CT, Echko MM, Ballestreros KE, et al.
    JAMA Pediatr, 2019 06 01;173(6):e190337.
    PMID: 31034019 DOI: 10.1001/jamapediatrics.2019.0337
    Importance: Understanding causes and correlates of health loss among children and adolescents can identify areas of success, stagnation, and emerging threats and thereby facilitate effective improvement strategies.

    Objective: To estimate mortality and morbidity in children and adolescents from 1990 to 2017 by age and sex in 195 countries and territories.

    Design, Setting, and Participants: This study examined levels, trends, and spatiotemporal patterns of cause-specific mortality and nonfatal health outcomes using standardized approaches to data processing and statistical analysis. It also describes epidemiologic transitions by evaluating historical associations between disease indicators and the Socio-Demographic Index (SDI), a composite indicator of income, educational attainment, and fertility. Data collected from 1990 to 2017 on children and adolescents from birth through 19 years of age in 195 countries and territories were assessed. Data analysis occurred from January 2018 to August 2018.

    Exposures: Being under the age of 20 years between 1990 and 2017.

    Main Outcomes and Measures: Death and disability. All-cause and cause-specific deaths, disability-adjusted life years, years of life lost, and years of life lived with disability.

    Results: Child and adolescent deaths decreased 51.7% from 13.77 million (95% uncertainty interval [UI], 13.60-13.93 million) in 1990 to 6.64 million (95% UI, 6.44-6.87 million) in 2017, but in 2017, aggregate disability increased 4.7% to a total of 145 million (95% UI, 107-190 million) years lived with disability globally. Progress was uneven, and inequity increased, with low-SDI and low-middle-SDI locations experiencing 82.2% (95% UI, 81.6%-82.9%) of deaths, up from 70.9% (95% UI, 70.4%-71.4%) in 1990. The leading disaggregated causes of disability-adjusted life years in 2017 in the low-SDI quintile were neonatal disorders, lower respiratory infections, diarrhea, malaria, and congenital birth defects, whereas neonatal disorders, congenital birth defects, headache, dermatitis, and anxiety were highest-ranked in the high-SDI quintile.

    Conclusions and Relevance: Mortality reductions over this 27-year period mean that children are more likely than ever to reach their 20th birthdays. The concomitant expansion of nonfatal health loss and epidemiological transition in children and adolescents, especially in low-SDI and middle-SDI countries, has the potential to increase already overburdened health systems, will affect the human capital potential of societies, and may influence the trajectory of socioeconomic development. Continued monitoring of child and adolescent health loss is crucial to sustain the progress of the past 27 years.

    Matched MeSH terms: Spatio-Temporal Analysis
  10. Patchanee P, Boonkhot P, Kittiwan N, Tadee P, Chotinun S
    PMID: 26867391
    Food-borne illness caused by Salmonella enterica remains a public health problem and results in economic loss worldwide. With the up-coming establish- ment of the ASEAN Economic Community (AEC) allowing unrestricted move- ment of labor and goods, there is a higher risk of pathogen transmission among the AEC countries. This study characterized and investigated the spatial and temporal associations of S. enterica strains isolated in AEC countries during 1940- 2012 compared with those isolated in northern-Thailand during 2011-2013. Of the 173 S. enterica strains examined, 68 sequence types (STs) and 32 clonal complexes (CCs) were identified by multi loci sequence typing. Twenty-one strains belonged to four sequence types new to AEC countries, and they constituted only two CCs. A number of strains originated from various countries with multiple hosts, were highlighted. There was evidence of strains circulating in the AEC region well over a decade. Such information will be important in formulating biosecurity measures, as well as in educating regarding the risk of disease transmission in AEC.
    Matched MeSH terms: Spatio-Temporal Analysis
  11. Abdul Shakor AS, Pahrol MA, Mazeli MI
    J Environ Public Health, 2020;2020:1561823.
    PMID: 32351580 DOI: 10.1155/2020/1561823
    Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) pollution poses a considerable threat to human health, and the first step in quantifying health impacts of human exposure to PM10 pollution is exposure assessment. Population-weighted exposure level (PWEL) estimation is one of the methods that provide a more refined exposure assessment as it includes the spatiotemporal distribution of the population into the pollution concentration estimation. This study assessed the population weighting effects on the estimated PM10 concentrations in Malaysia for years 2000, 2008, and 2013. Estimated PM10 annual mean concentrations with a spatial resolution of 5 kilometres retrieved from satellite data and population count obtained from the Gridded Population of the World version 4 (GPWv4) from the Centre for International Earth Science Information Network (CIESIN) were overlaid to generate the PWEL of PM10 for each state. The calculated PWEL of PM10 concentrations were then classified based on the World Health Organization (WHO) and the national Air Quality Guidelines (AQG) and interim targets (IT) for comparison. Results revealed that the annual mean PM10 concentrations in Malaysia ranged from 31 to 73 µg/m3 but became generally lower, ranging from 20 to 72 µg/m3 after population weighting, suggesting that the PM10 population exposure in Malaysia might have been overestimated. PWEL of PM10 distribution showed that the majority of the population lived in areas that complied with the national AQG, but were vulnerable to exposure level 3 according to the WHO AQG and IT, indicating that the population was nevertheless potentially exposed to significant health effects from long-term exposure to PM10 pollution.
    Matched MeSH terms: Spatio-Temporal Analysis
  12. Gaveau DL, Sloan S, Molidena E, Yaen H, Sheil D, Abram NK, et al.
    PLoS One, 2014;9(7):e101654.
    PMID: 25029192 DOI: 10.1371/journal.pone.0101654
    The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
    Matched MeSH terms: Spatio-Temporal Analysis
  13. Ibrahim RW, Nashine HK, Kamaruddin N
    Math Biosci, 2017 10;292:10-17.
    PMID: 28728968 DOI: 10.1016/j.mbs.2017.07.007
    A biological dynamic system carries engineering properties such as control systems and signal processing (or image processing) addicted to molecular biology at the level of bio-molecular communication networks. Dynamical system features and signal reply functions of cellular signaling pathways are some of the main topics in biological dynamic systems (for example the biological segmentation). In the present paper, we introduce new generalized hybrid time-space dynamical systems of growing bacteria. We impose the approximate analytic solution for the system. The generalization adapted the concepts of the Riemann-Liouville fractional operators for time and the Srivastava-Owa fractional operators for space. Moreover, we introduce a numerical perturbation method of two operators to obtain the approximate solutions. We establish the existence and uniqueness results and impose some applications in the sequel. Moreover, we study the Ulam stability and apply these stable solutions to improve the segmentation of a class of growing bacteria.
    Matched MeSH terms: Spatio-Temporal Analysis
  14. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
    Matched MeSH terms: Spatio-Temporal Analysis
  15. Zohner CM, Mo L, Renner SS, Svenning JC, Vitasse Y, Benito BM, et al.
    Proc Natl Acad Sci U S A, 2020 06 02;117(22):12192-12200.
    PMID: 32393624 DOI: 10.1073/pnas.1920816117
    Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
    Matched MeSH terms: Spatio-Temporal Analysis
  16. Aburas MM, Ho YM, Ramli MF, Ash'aari ZH
    Environ Monit Assess, 2018 Feb 20;190(3):156.
    PMID: 29464400 DOI: 10.1007/s10661-018-6522-9
    The identification of spatio-temporal patterns of the urban growth phenomenon has become one of the most significant challenges in monitoring and assessing current and future trends of the urban growth issue. Therefore, spatio-temporal and quantitative techniques should be used hand in hand for a deeper understanding of various aspects of urban growth. The main purpose of this study is to monitor and assess the significant patterns of urban growth in Seremban using a spatio-temporal built-up area analysis. The concentric circles approach was used to measure the compactness and dispersion of built-up area by employing Shannon's Entropy method. The spatial directions approach was also utilised to measure the sustainability and speed of development, while the gradient approach was used to measure urban dynamics by employing landscape matrices. The overall results confirm that urban growth in Seremban is dispersed, unbalanced and unsustainable with a rapid speed of regional development. The main contribution of using existing methods with other methods is to provide several spatial and statistical dimensions that can help researchers, decision makers and local authorities understand the trend of growth and its patterns in order to take the appropriate decisions for future urban planning. For example, Shannon's Entropy findings indicate a high value of dispersion between the years 1990 and 2000 and from 2010 to 2016 with a growth rate of approximately 94 and 14%, respectively. Therefore, these results can help and support decision makers to implement alternative urban forms such as the compactness form to achieve an urban form that is more suitable and sustainable. The results of this study confirm the importance of using spatio-temporal built-up area and quantitative analysis to protect the sustainability of land use, as well as to improve the urban planning system via the effective monitoring and assessment of urban growth trends and patterns.
    Matched MeSH terms: Spatio-Temporal Analysis
  17. Sanchez-Bezanilla S, Hood RJ, Collins-Praino LE, Turner RJ, Walker FR, Nilsson M, et al.
    J Cereb Blood Flow Metab, 2021 09;41(9):2439-2455.
    PMID: 33779358 DOI: 10.1177/0271678X211005877
    There is emerging evidence suggesting that a cortical stroke can cause delayed and remote hippocampal dysregulation, leading to cognitive impairment. In this study, we aimed to investigate motor and cognitive outcomes after experimental stroke, and their association with secondary neurodegenerative processes. Specifically, we used a photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Motor function was assessed using the cylinder and grid walk tasks. Changes in cognition were assessed using a mouse touchscreen platform. Neuronal loss, gliosis and amyloid-β accumulation were investigated in the peri-infarct and ipsilateral hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed persistent impairment in cognitive function post-stroke, whilst there was a modest spontaneous motor recovery over the investigated period of 84 days. In the peri-infarct region, we detected a reduction in neuronal loss and decreased neuroinflammation over time post-stroke, which potentially explains the spontaneous motor recovery. Conversely, we observed persistent neuronal loss together with concomitant increased neuroinflammation and amyloid-β accumulation in the hippocampus, which likely accounts for the persistent cognitive dysfunction. Our findings indicate that cortical stroke induces secondary neurodegenerative processes in the hippocampus, a region remote from the primary infarct, potentially contributing to the progression of post-stroke cognitive impairment.
    Matched MeSH terms: Spatio-Temporal Analysis*
  18. Ganasegeran K, Ch'ng ASH, Aziz ZA, Looi I
    Sci Rep, 2020 Jul 09;10(1):11353.
    PMID: 32647336 DOI: 10.1038/s41598-020-68335-1
    Stroke has emerged as a major public health concern in Malaysia. We aimed to determine the trends and temporal associations of real-time health information-seeking behaviors (HISB) and stroke incidences in Malaysia. We conducted a countrywide ecological correlation and time series study using novel internet multi-timeline data stream of 6,282 hit searches and conventional surveillance data of 14,396 stroke cases. We searched popular search terms related to stroke in Google Trends between January 2004 and March 2019. We explored trends by comparing average relative search volumes (RSVs) by month and weather through linear regression bootstrapping methods. Geographical variations between regions and states were determined through spatial analytics. Ecological correlation analysis between RSVs and stroke incidences was determined via Pearson's correlations. Forecasted model was yielded through exponential smoothing. HISB showed both cyclical and seasonal patterns. Average RSV was significantly higher during Northeast Monsoon when compared to Southwest Monsoon (P 
    Matched MeSH terms: Spatio-Temporal Analysis
  19. Arai T
    PLoS One, 2014;9(6):e100779.
    PMID: 24964195 DOI: 10.1371/journal.pone.0100779
    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
    Matched MeSH terms: Spatio-Temporal Analysis*
  20. Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman WY, et al.
    PLoS Negl Trop Dis, 2015;9(10):e0004135.
    PMID: 26448052 DOI: 10.1371/journal.pntd.0004135
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000 hrs.

    CONCLUSIONS/SIGNIFICANCE: This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.

    Matched MeSH terms: Spatio-Temporal Analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links