Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Sakai S, Kato M, Nagamasu H
    Am J Bot, 2000 Mar;87(3):440-5.
    PMID: 10719005
    A previously undescribed pollination system involving a monoecious tree species, Artocarpus integer (Moraceae), pollinator gall midges, and fungi is reported from a mixed dipterocarp forest in Sarawak, Borneo. The fungus Choanephora sp. (Choanephoraceae, Mucorales, Zygomycetes) infects male inflorescences of A. integer, and gall midges (Contarinia spp., Cecidomyiinae, Diptera) feed on the fungal mycelia and oviposit on the inflorescence. Their larvae also feed on the mycelia and pupate in the inflorescence. The gall midges are also attracted by female inflorescences lacking mycelia, probably due to a floral fragrance similar to that of male inflorescences. Because of the sticky pollen, dominance of Contarinia spp. in flower visitors, and pollen load observed on Contarinia spp. collected on both male and female inflorescences, Artocarpus integer is thought to be pollinated by the gall midges. Although several pathogenic fungi have been reported to have interactions with pollinators, this is the first report on a pollination mutualism in which a fungus plays an indispensable role. The pollination system described here suggests that we should be more aware of the roles fungi can play in pollinations.
    Matched MeSH terms: Symbiosis
  2. Harrison RD
    Proc Biol Sci, 2000 May 7;267(1446):911-5.
    PMID: 10853734
    Figs (Ficus spp.) and their species-specific pollinators, the fig wasps (Agaonidae), have coevolved one of the most intricate interactions found in nature, in which the fig wasps, in return for pollination services, raise their offspring in the fig inflorescence. Fig wasps, however, have very short adult lives and hence are dependent on the near-continuous production of inflorescences to maintain their populations. From January to March 1998 northern Borneo suffered a very severe drought linked to the El Niño-Southern Oscillation event of 1997-1998. This caused a substantial break in the production of inflorescences on dioecious figs and led to the local extinction of their pollinators at Lambir Hills National Park, Sarawak, Malaysia. Most pollinators had not recolonized six months after the drought and, given the high level of endemism and wide extent of the drought, some species may be totally extinct. Cascading effects on vertebrate seed dispersers, for which figs are often regarded as keystone resources, and the tree species dependent on their services are also likely. This has considerable implications for the maintenance of biodiversity under a scenario of climate change and greater climatic extremes.
    Matched MeSH terms: Symbiosis*
  3. Feldhaar H, Fiala B, bin Hashim R, Maschwitz U
    Naturwissenschaften, 2000 Sep;87(9):408-11.
    PMID: 11091965
    Matched MeSH terms: Symbiosis*
  4. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: Symbiosis
  5. Feldhaar H, Fiala B, Gadau J, Mohamed M, Maschwitz U
    Mol Phylogenet Evol, 2003 Jun;27(3):441-52.
    PMID: 12742749
    To elucidate the evolution of one of the most species-rich ant-plant symbiotic systems, the association between Crematogaster (Myrmicinae) and Macaranga (Euphorbiaceae) in South-East Asia, we conducted a phylogenetic analysis of the ant partners. For the phylogenetic analysis partial mitochondrial cytochrome oxidase I and II were sequenced and Maximum Parsimony analysis was performed. The analyzed Crematogaster of the subgenus Decacrema fell into three distinct clades which are also characterized by specific morphological and ecological traits (queen morphology, host-plants, and colony structure). Our results supported the validity of our currently used morphospecies concept for Peninsula Malaysia. However, on a wider geographic range (including North and North-East Borneo) some morphospecies turned out to be species complexes with genetically quite distinct taxa. Our phylogenetic analysis and host association studies do not indicate strict cocladogenesis between the subgenus Decacrema and their Macaranga host-plants because multiple ant taxa occur on quite distinct host-plants belonging to different clades within in the genus Macaranga. These results support the view that host-shifting or host-expansion is common in the ants colonizing Macaranga. Additionally, the considerable geographic substructuring found in the phylogenetic trees of the ants suggests that allopatric speciation has also played a role in the diversification and the current distribution of the Decacrema ants.
    Matched MeSH terms: Symbiosis*
  6. Quek SP, Davies SJ, Itino T, Pierce NE
    Evolution, 2004 Mar;58(3):554-70.
    PMID: 15119439
    We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.
    Matched MeSH terms: Symbiosis*
  7. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Symbiosis/physiology*
  8. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE
    Mol Ecol, 2007 May;16(10):2045-62.
    PMID: 17498231
    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.
    Matched MeSH terms: Symbiosis*
  9. Delgado AM, Cook JM
    BMC Evol. Biol., 2009;9:49.
    PMID: 19257899 DOI: 10.1186/1471-2148-9-49
    Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.
    Matched MeSH terms: Symbiosis
  10. Sim JH, Khoo CH, Lee LH, Cheah YK
    J Microbiol Biotechnol, 2010 Apr;20(4):651-8.
    PMID: 20467234
    Garcinia is commonly found in Malaysia, but limited information is available regarding endophytic fungi associated with this plant. In this study, 24 endophytic fungi were successfully recovered from different parts of two Garcinia species. Characterization of endophytic fungi was performed based on the conserved internal transcribed spacer (ITS) region sequence analysis and the antimicrobial properties. Results revealed that fruits of the plant appeared to be the highest inhabitation site (38 %) as compared with others. Glomerella sp., Guignardia sp., and Phomopsis sp. appeared to be the predominant endophytic fungi group in Garcinia mangostana and Garcinia parvifolia. Phylogenetic relationships of the isolated endophytic fungi were estimated from the sequences of the ITS region. On the other hand, antibacterial screening showed 11 of the isolates possessed positive response towards pathogenic and nonpathogenic bacteria. However, there was no direct association between certain antibacterial properties with the specific genus observed.
    Matched MeSH terms: Symbiosis
  11. Al-Khaliel AS
    Trop Life Sci Res, 2010 Aug;21(1):55-70.
    PMID: 24575190
    Mycorrhiza, a mutualistic association between fungi and higher plants, has been documented extensively, but much less is known about the development of arbuscular mycorrhizal (AM) fungi and their effects on the growth of peanuts (Arachis hypogea L.). Therefore, the mycorrhizal status of Glomus spp. was investigated in the following diverse substrate soil conditions: non-autoclaved soil, autoclaved soil and autoclaved soil plus soil microbiota. The results indicated that both the arbuscular mycorrhizae, Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Glomus fasciculatum (Thaxter) Gerd. & Trappe emend. Walker & Koske were infective to peanut, but displayed a differential impact on peanut growth depending on the microbial biomass content of the substrate soils. G. mosseae proved to be the most effective at improving peanut growth.
    Matched MeSH terms: Symbiosis
  12. Clarke C, Moran JA, Chin L
    Plant Signal Behav, 2010 Oct;5(10):1187-9.
    PMID: 20861680
    Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified "toilet pitchers" that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with faeces and regularly defecate into the pitchers when they visit them to feed. Faeces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews, and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species.
    Matched MeSH terms: Symbiosis/physiology*
  13. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Symbiosis
  14. Sundram S, Meon S, Seman IA, Othman R
    J Microbiol, 2011 Aug;49(4):551-7.
    PMID: 21887636 DOI: 10.1007/s12275-011-0489-3
    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.
    Matched MeSH terms: Symbiosis/physiology*
  15. Djauhari, M.A.
    ASM Science Journal, 2011;5(1):53-63.
    MyJurnal
    Industrial statistics is an important part of the management system in any industry that strives to continuously improve quality and increase productivity and efficiency. That system covers supply chain management, production design and prototyping, production process and marketing. Industrial statisticians, industrial engineers and industrial leaders should work together hand in hand, in the same language, to ensure that the process and products are as expected. The system itself is never complete. Thus, the usefulness, manageability and reliability of all statistical models used in the system are to be considered as first priority, but those skills are not sufficient. Industrial statisticians should also, of course, be able to come and go between the two poles: statistics and industry. This requirement needs a good understanding about the culture of these poles and how to conduct a mutual symbiosis. One of the principal bridges between these cultures is statistical process control (SPC). This paper is to show that modern industry cannot escape from SPC, especially in a multivariate setting. This setting, which characterizes modern industry, consists of two philosophical problems: how to order data and how to measure process variability. Our recent research results sponsored by the Government of Malaysia will be presented to illustrate the challenging statistical problems in modern industry.
    Matched MeSH terms: Symbiosis
  16. Perrineau MM, Le Roux C, Galiana A, Faye A, Duponnois R, Goh D, et al.
    Appl Environ Microbiol, 2014 Sep;80(18):5709-16.
    PMID: 25002434 DOI: 10.1128/AEM.02007-14
    Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.
    Matched MeSH terms: Symbiosis*
  17. King JH, Mahadi NM, Bong CF, Ong KH, Hassan O
    Insect Sci, 2014 Oct;21(5):584-96.
    PMID: 24123989 DOI: 10.1111/1744-7917.12061
    Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near-full-length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.
    Matched MeSH terms: Symbiosis*
  18. Bignell DE, Jones DT
    J Insect Sci, 2014;14:81.
    PMID: 25368037 DOI: 10.1093/jis/14.1.81
    Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y, Lo N, (Editors), Springer, Dordrecht, 576pp, ISBN 978-90-481-3976-7, e-ISBN 978-90-481-3977-4, DOI 10.1007/978-90-481-3977-4) was published in 2011. With the agreement of the publishers, we give a taxonomic index of the book comprising 494 termite entries, 103 entries of other multicellular animal species mentioned as associates or predators of termites, with 9 fungal, 60 protist, and 64 prokaryote identities, which are listed as termite symbionts (sensu stricto). In addition, we add descriptive authorities for living (and some fossil) termite genera and species. Higher taxonomic groupings for termites are indicated by 25 code numbers. Microorganisms (prokaryotes, protists, and fungi) are listed separately, using broad modern taxonomic affiliations from the contemporary literature of bacteriology, protozoology, and mycology.
    Matched MeSH terms: Symbiosis
  19. Fayle TM, Eggleton P, Manica A, Yusah KM, Foster WA
    Ecol Lett, 2015 Mar;18(3):254-62.
    PMID: 25622647 DOI: 10.1111/ele.12403
    Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants.
    Matched MeSH terms: Symbiosis
  20. Mennes CB, Moerland MS, Rath M, Smets EF, Merckx VS
    Am J Bot, 2015 Apr;102(4):598-608.
    PMID: 25878092 DOI: 10.3732/ajb.1400549
    The mycoheterotrophic lifestyle has enabled some plant lineages to obtain carbon from their mycorrhizal symbionts. The mycoheterotrophic genus Epirixanthes (Polygalaceae) consists of six species from tropical Asia. Although it is probably closely related to the chlorophyllous genus Salomonia and linked to arbuscular mycorrhizal fungi, lack of DNA sequence data has thus far prevented these hypotheses from being tested. Therefore, the evolutionary history of Epirixanthes remains largely unknown.
    Matched MeSH terms: Symbiosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links