Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
    Matched MeSH terms: Viral Proteins/chemistry
  2. Tomlinson KR, Pablo-Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, et al.
    Mol Plant Pathol, 2019 08;20(8):1080-1092.
    PMID: 31154674 DOI: 10.1111/mpp.12813
    Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
    Matched MeSH terms: Viral Proteins/chemistry
  3. Parmin NA, Hashim U, Gopinath SCB
    Int J Biol Macromol, 2018 Feb;107(Pt B):1738-1746.
    PMID: 29030179 DOI: 10.1016/j.ijbiomac.2017.10.051
    Human Papillomavirus (HPV) is a standout amongst the most commonly reported over 100 types, among them genotypes 16, 18, 31 and 45 are the high-risk HPV. Herein, we designed the oligonucleotide probe for the detection of predominant HPV type 16 for the sensing applications. Conserved amino acid sequences within E6 region of the open reading frame in the HPV genome was used as the basis to design oligonucleotide probe to detect cervical cancer. Analyses of E6 amino acid sequences from the high-risk HPVs were done to check the percentage of similarity and consensus regions that cause different cancers, including cervical cancer. Basic local alignment search tools (BLAST) have given extra statistical parameters, for example, desire values (E-values) and score bits. The probe, 'GGG GTC GGT GGA CCG GTC GAT GTA' was designed with 66.7% GC content. This oligonucleotide probe is designed with the length of 24 mer, GC percent is between 40 and 70, and the melting point (Tm) is above 50°C. The probe needed an acceptable length between 22 and 31 mer. The choice of region is identified here can be used as a probe, has implications for HPV detection techniques in biosensor especially for clinical determination of cervical cancer.
    Matched MeSH terms: Viral Proteins/chemistry
  4. Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al.
    Emerg Microbes Infect, 2016 Aug 17;5(8):e90.
    PMID: 27530749 DOI: 10.1038/emi.2016.90
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
    Matched MeSH terms: Viral Proteins/chemistry
  5. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
    Matched MeSH terms: Viral Proteins/chemistry
  6. Kalbhor MS, Bhowmick S, Alanazi AM, Patil PC, Islam MA
    Biophys Chem, 2021 03;270:106537.
    PMID: 33450550 DOI: 10.1016/j.bpc.2020.106537
    Nipah virus (NiV) infections are highly contagious and can cause severe febrile encephalitis. An outbreak of NiV infection has reported high mortality rates in Southeast Asian countries including Bangladesh, East Timor, Malaysia, Papua New Guinea, Vietnam, Cambodia, Indonesia, Madagascar, Philippines, Thailand and India. Considering the high risk for an epidemic outbreak, the World Health Organization (WHO) declared NiV as an emerging priority pathogen. However, there are no effective therapeutics or any FDA approved drugs available for the treatment of this infection. Among the known nine proteins of NiV, glycoprotein plays an important role in initiating the entry of viruses and attaching to the host cell receptors. Herein, three antiviral databases consisting of 79,892 chemical entities have been computationally screened against NiV glycoprotein (NiV-G). Particularly, multi-step molecular docking followed by extensive molecular binding interactions analyses, binding free energy estimation, in silico pharmacokinetics, synthetic accessibility and toxicity profile evaluations have been carried out for initial identification of potential NiV-G inhibitors. Further, molecular dynamics (MD) simulation has been performed to understand the dynamic properties of NiV-G protein-bound with proposed five inhibitors (G1-G5) and their interactions behavior, and any conformational changes in NiV-G protein during simulations. Moreover, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) based binding free energies (∆G) has been calculated from all MD simulation trajectories to understand the energy contribution of each proposed compound in maintaining and stabilizing the complex binding interactions with NiV-G protein. Proposed compounds showed high negative ∆G values ranging from -166.246 to -226.652 kJ/mol indicating a strong affinity towards the NiV-G protein.
    Matched MeSH terms: Viral Proteins/chemistry
  7. Hu Y, Tan PT, Tan TW, August JT, Khan AM
    PLoS One, 2013;8(4):e59994.
    PMID: 23593157 DOI: 10.1371/journal.pone.0059994
    The rapid mutation of human immunodeficiency virus-type 1 (HIV-1) and the limited characterization of the composition and incidence of the variant population are major obstacles to the development of an effective HIV-1 vaccine. This issue was addressed by a comprehensive analysis of over 58,000 clade B HIV-1 protein sequences reported over at least 26 years. The sequences were aligned and the 2,874 overlapping nonamer amino acid positions of the viral proteome, each a possible core binding domain for human leukocyte antigen molecules and T-cell receptors, were quantitatively analyzed for four patterns of sequence motifs: (1) "index", the most prevalent sequence; (2) "major" variant, the most common variant sequence; (3) "minor" variants, multiple different sequences, each with an incidence less than that of the major variant; and (4) "unique" variants, each observed only once in the alignment. The collective incidence of the major, minor, and unique variants at each nonamer position represented the total variant population for the position. Positions with more than 50% total variants contained correspondingly reduced incidences of index and major variant sequences and increased minor and unique variants. Highly diverse positions, with 80 to 98% variant nonamer sequences, were present in each protein, including 5% of Gag, and 27% of Env and Nef, each. The multitude of different variant nonamer sequences (i.e. nonatypes; up to 68%) at the highly diverse positions, represented by the major, multiple minor, and multiple unique variants likely supported variants function both in immune escape and as altered peptide ligands with deleterious T-cell responses. The patterns of mutational change were consistent with the sequences of individual HXB2 and C1P viruses and can be considered applicable to all HIV-1 viruses. This characterization of HIV-1 protein mutation provides a foundation for the design of peptide-based vaccines and therapeutics.
    Matched MeSH terms: Viral Proteins/chemistry
  8. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

    Matched MeSH terms: Viral Proteins/chemistry*
  9. Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A, et al.
    Biochimie, 2021 Dec;191:27-32.
    PMID: 34389380 DOI: 10.1016/j.biochi.2021.08.003
    In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.
    Matched MeSH terms: Viral Proteins/chemistry
  10. Kumar P, Gaur P, Kumari R, Lal SK
    J Cell Biochem, 2019 04;120(4):6449-6458.
    PMID: 30335904 DOI: 10.1002/jcb.27935
    Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein-heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.
    Matched MeSH terms: Viral Proteins/chemistry*
  11. Li YY, Liu H, Fu SH, Li XL, Guo XF, Li MH, et al.
    Infect Genet Evol, 2017 11;55:48-55.
    PMID: 28827175 DOI: 10.1016/j.meegid.2017.08.016
    Getah virus (GETV) was first isolated in Malaysia in 1955. Since then, epidemics in horses and pigs caused by GETV have resulted in huge economic losses. At present, GETV has spread across Eurasia and Southeast Asia, including mainland China, Korea, Japan, Mongolia, and Russia. Data show that the Most Recent Common Ancestor (MRCA) of GETV existed about 145years ago (95% HPD: 75-244) and gradually evolved into four distinct evolutionary populations: Groups I-IV. The MRCA of GETVs in Group III, which includes all GETVs isolated from mosquitoes, pigs, horses, and other animals since the 1960s (from latitude 19°N to 60°N), existed about 51years ago (95% HPD: 51-72). Group III is responsible for most viral epidemics among domestic animals. An analysis of the GETV E2 protein sequence and structure revealed seven common amino acid mutation sites. These sites are responsible for the structural and electrostatic differences detected between widespread Group III isolates and the prototype strain MM2021. These differences may account for the recent geographical radiation of the virus. Considering the economic significance of GETV infection in pigs and horses, we recommend the implementation of strict viral screening and monitoring programs.
    Matched MeSH terms: Viral Proteins/chemistry
  12. Sun B, Jia L, Liang B, Chen Q, Liu D
    Virol Sin, 2018 Oct;33(5):385-393.
    PMID: 30311101 DOI: 10.1007/s12250-018-0050-1
    Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
    Matched MeSH terms: Viral Proteins/chemistry*
  13. Camalxaman SN, Zeenathul NA, Quah YW, Loh HS, Zuridah H, Sheikh-Omar AR, et al.
    Trop Biomed, 2011 Dec;28(3):661-7.
    PMID: 22433897 MyJurnal
    This study probes into the prospect of cross-reactivity of HCMV with RCMV which has not been acknowledged to date. We describe the uncovering of a protein with an estimated size of between 61-68 kDa from local RCMV strains which reacted with HCMV positive sera. Our findings are a first disclosure of a plausible immunological cross-reactivity between RCMV with its human counterpart which grounds substantial interest implying existence of conserved determinants between rat and human CMV polypeptides. The cross-reactive protein most likely represents an enveloped glycoprotein, though the precise identification and its degree of similarity needs to be evidently defined and further elucidated in forthcoming experiments.
    Matched MeSH terms: Viral Proteins/chemistry
  14. Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN
    Infect Genet Evol, 2021 Sep;93:104944.
    PMID: 34052418 DOI: 10.1016/j.meegid.2021.104944
    Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
    Matched MeSH terms: Viral Proteins/chemistry
  15. Sabarudin NS, Tan SW, Phang YF, Omar AR
    J Vet Sci, 2021 Jul;22(4):e42.
    PMID: 34313038 DOI: 10.4142/jvs.2021.22.e42
    BACKGROUND: Inclusion body hepatitis (IBH) is an economically important viral disease primarily affecting broiler and breeder chickens. All 12 serotypes of fowl adenovirus (FAdV) can cause IBH.

    OBJECTIVES: To characterize FAdV isolates based on phylogenetic analysis, and to study the pathogenicity of FAdV-8b in specific-pathogen-free (SPF) chickens following virus inoculation via oral and intramuscular (IM) routes.

    METHODS: Suspected organ samples were subjected to virus isolation and polymerase chain reaction (PCR) for FAdV detection. Hexon gene sequencing and phylogenetic analysis were performed on FAdV-positive samples for serotype identification. One FAdV-8b isolate, UPM/FAdV/420/2017, was selected for fiber gene characterization and pathogenicity study and was inoculated in SPF chickens via oral and IM routes.

    RESULTS: The hexon gene phylogenetic analysis revealed that all isolates belonged to FAdV-8b. The fiber gene-based phylogenetic analysis of isolate UPM/FAdV/420/2017 supported the grouping of that isolate into FAdV species E. Pathogenicity study revealed that, chickens infected with UPM/FAdV/420/2017 via the IM route had higher clinical score values, higher percent mortality, higher degree of the liver lesions, higher antibody response (p < 0.05), and higher virus shedding amounts (p < 0.05) than those infected via the oral route. The highest virus copy numbers were detected in liver and gizzard.

    CONCLUSIONS: FAdV-8b is the dominant FAdV serotype in Malaysia, and pathogenicity study of the FAdV-8b isolate UPM/FAdV/420/2017 indicated its ability to induce IBH in young SPF chickens when infected via oral or IM routes.

    Matched MeSH terms: Viral Proteins/chemistry
  16. Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, et al.
    Nucleic Acids Res, 2021 Jan 08;49(D1):D266-D273.
    PMID: 33237325 DOI: 10.1093/nar/gkaa1079
    CATH (https://www.cathdb.info) identifies domains in protein structures from wwPDB and classifies these into evolutionary superfamilies, thereby providing structural and functional annotations. There are two levels: CATH-B, a daily snapshot of the latest domain structures and superfamily assignments, and CATH+, with additional derived data, such as predicted sequence domains, and functionally coherent sequence subsets (Functional Families or FunFams). The latest CATH+ release, version 4.3, significantly increases coverage of structural and sequence data, with an addition of 65,351 fully-classified domains structures (+15%), providing 500 238 structural domains, and 151 million predicted sequence domains (+59%) assigned to 5481 superfamilies. The FunFam generation pipeline has been re-engineered to cope with the increased influx of data. Three times more sequences are captured in FunFams, with a concomitant increase in functional purity, information content and structural coverage. FunFam expansion increases the structural annotations provided for experimental GO terms (+59%). We also present CATH-FunVar web-pages displaying variations in protein sequences and their proximity to known or predicted functional sites. We present two case studies (1) putative cancer drivers and (2) SARS-CoV-2 proteins. Finally, we have improved links to and from CATH including SCOP, InterPro, Aquaria and 2DProt.
    Matched MeSH terms: Viral Proteins/chemistry
  17. Ksiazek TG, Rota PA, Rollin PE
    Virus Res, 2011 Dec;162(1-2):173-83.
    PMID: 21963678 DOI: 10.1016/j.virusres.2011.09.026
    The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
    Matched MeSH terms: Viral Proteins/chemistry
  18. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Viral Proteins/chemistry
  19. Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES, Hossain MJ, et al.
    Emerg Infect Dis, 2012 Feb;18(2):248-55.
    PMID: 22304936 DOI: 10.3201/eid1802.111492
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes fatal encephalitis in humans. The initial outbreak of NiV infection occurred in Malaysia and Singapore in 1998-1999; relatively small, sporadic outbreaks among humans have occurred in Bangladesh since 2001. We characterized the complete genomic sequences of identical NiV isolates from 2 patients in 2008 and partial genomic sequences of throat swab samples from 3 patients in 2010, all from Bangladesh. All sequences from patients in Bangladesh comprised a distinct genetic group. However, the detection of 3 genetically distinct sequences from patients in the districts of Faridpur and Gopalganj indicated multiple co-circulating lineages in a localized region over a short time (January-March 2010). Sequence comparisons between the open reading frames of all available NiV genes led us to propose a standardized protocol for genotyping NiV; this protcol provides a simple and accurate way to classify current and future NiV sequences.
    Matched MeSH terms: Viral Proteins/chemistry
  20. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Viral Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links