Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Ramdas P, Rajihuzzaman M, Veerasenan SD, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cancer Genomics Proteomics, 2011 Jan-Feb;8(1):19-31.
    PMID: 21289334
    Tocotrienols belong to the vitamin E family and have multiple anticancer effects, such as antiproliferative, antioxidant, pro-apoptosis and antimetastatic. This study aimed to identify the genes that are regulated in human breast cancer cells following exposure to various isomers of vitamin E as these may be potential targets for the treatment of breast cancer.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  2. Zahary MN, Kaur G, Abu Hassan MR, Singh H, Naik VR, Ankathil R
    World J Gastroenterol, 2012 Feb 28;18(8):814-20.
    PMID: 22371642 DOI: 10.3748/wjg.v18.i8.814
    To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  3. Abdul Murad NA, Othman Z, Khalid M, Abdul Razak Z, Hussain R, Nadesan S, et al.
    Dig Dis Sci, 2012 Nov;57(11):2863-72.
    PMID: 22669205 DOI: 10.1007/s10620-012-2240-2
    BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide with approximately 1 million cases diagnosed annually. In Malaysia, CRC is the second most common cancer in women and ranked first in men. The underlying cause of CRC remains unknown.

    AIMS: The aim of this study was to analyze the mutations in genes involved in CRC including MLH1, MSH2, KRAS, and APC genes.

    METHODS: A total of 76 patients were recruited. We used the polymerase chain reaction-denaturing high-performance liquid chromatography for the detection of mutations in the mismatch repair (MMR) and APC genes and the PCR single-strand conformation polymorphism for screening of the KRAS gene mutations.

    RESULTS: We identified 17 types of missense mutations in 38 out of 76 patients in our patients. Nine mutations were identified in the APC gene, five mutations were detected in the KRAS gene, and two mutations were identified in the MSH2 gene. Only one mutation was identified in MLH1. Out of these 17 mutations, eight mutations (47 %) were predicted to be pathogenic. Seven patients were identified with multiple mutations (3: MSH2 and KRAS, 1: KRAS and APC, 1: MLH1 and APC, 2: APC and APC).

    CONCLUSIONS: We have established the PCR-DHPLC and PCR-SSCP for screening of mutations in CRC patients. This study has given a snapshot of the spectrum of mutations in the four genes that were analyzed. Mutation screening in patients and their family members will help in the early detection of CRC and hence will reduce mortality due to CRC.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  4. Zain MA, Jahan SN, Reynolds GP, Zainal NZ, Kanagasundram S, Mohamed Z
    BMC Med Genet, 2012;13:91.
    PMID: 23031404 DOI: 10.1186/1471-2350-13-91
    One of the genes suggested to play an important role in the pathophysiology of bipolar disorder (BPD) is PDLIM5, which encodes LIM domain protein. Our main objective was to examine the effect of olanzapine treatment on PDLIM5 mRNA expression in the peripheral blood leukocytes of BPD patients.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  5. Zain MA, Roffeei SN, Zainal NZ, Kanagasundram S, Mohamed Z
    Psychiatr Genet, 2013 Dec;23(6):258-61.
    PMID: 24064681 DOI: 10.1097/YPG.0000000000000015
    Two single nucleotide polymorphisms of PDLIM5, rs7690296 and rs11097431, were genotyped using Mass-Array SNP genotyping by Sequenom technology in 244 bipolar disorder patients, 471 schizophrenia patients, and 601 control individuals who were Malay, Chinese, and Indian ethnic groups in the Malaysian population. A significant association was observed in allele frequency between the rs7690296 polymorphism and bipolar disorder in the Indian ethnic group [P=0.02, adjusted odds ratio (OR) 0.058, 95% confidence interval (CI) 0.36-0.93]. A significant association was also observed between the rs7690296 polymorphism and schizophrenia under the recessive model for both Malay (P=0.02, adjusted OR 1.86, 95% CI 1.12-3.10) and Indian (P=0.02, adjusted OR 1.92, 95% CI 1.10-3.37) ethnic groups. However, no association was detected between the rs11097431 polymorphism either with bipolar disorder or with schizophrenia. Therefore, it can be deduced that the nonsynonymous rs7690296 polymorphism could play an important role in the pathophysiology of both bipolar disorder and schizophrenia.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  6. Nizam ZM, Abdul Aziz AA, Kaur G, Abu Hassan MR, Mohd Sidek AS, Yeh LY, et al.
    Asian Pac J Cancer Prev, 2013;14(2):619-24.
    PMID: 23621208
    BACKGROUND: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable.

    AIM: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk.

    METHODS: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs).

    RESULTS: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253).

    CONCLUSION: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  7. Darawi MN, Ai-Vyrn C, Ramasamy K, Hua PP, Pin TM, Kamaruzzaman SB, et al.
    BMC Med Genet, 2013;14:27.
    PMID: 23419238 DOI: 10.1186/1471-2350-14-27
    The incidence of Alzheimer's disease, particularly in developing countries, is expected to increase exponentially as the population ages. Continuing research in this area is essential in order to better understand this disease and develop strategies for treatment and prevention. Genome-wide association studies have identified several loci as genetic risk factors of AD aside from apolipoprotein E such as bridging integrator (BIN1), clusterin (CLU), ATP-binding cassette sub-family A member 7 (ABCA7), complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein (PICALM). However genetic research in developing countries is often limited by lack of funding and expertise. This study therefore developed and validated a simple, cost effective polymerase chain reaction based technique to determine these single nucleotide polymorphisms.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  8. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  9. Zain SM, Mohamed Z, Mohamed R
    J Gastroenterol Hepatol, 2015 Jan;30(1):21-7.
    PMID: 25167786 DOI: 10.1111/jgh.12714
    BACKGROUND AND AIM: Although studies have suggested that rs780094, a common variant in the glucokinase regulatory (GCKR) gene to be associated with type 2 diabetes, obesity, and their related traits, the genetic basis of the association between GCKR rs780094 and nonalcoholic fatty liver disease (NAFLD) is still being examined. This meta-analysis was performed to evaluate the effect strength caused by GCKR rs780094 on NAFLD.
    METHODS: We searched Medline, PubMed, Scopus, and Embase for relevant articles published up to April 2014. Data were extracted, and summary estimates of the association between GCKR rs780094 and NAFLD were examined. Heterogeneity and publication bias were also examined.
    RESULTS: This meta-analysis incorporated a total of 2091 NAFLD cases and 3003 controls from five studies. Overall, the pooled result indicated that the GCKR rs780094 was significantly associated with increased risk of NAFLD (additive: odds ratio (OR) 1.25, 95% confidence interval (CI) 1.14-1.36, P 
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  10. Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A
    Biofactors, 2015 Jan-Feb;41(1):1-14.
    PMID: 25545372 DOI: 10.1002/biof.1195
    Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  11. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Cell Death Dis, 2015;6:e1826.
    PMID: 26181206 DOI: 10.1038/cddis.2015.191
    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  12. Wee LH, Morad NA, Aan GJ, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2015;16(15):6549-56.
    PMID: 26434873
    The PI3K-Akt-mTOR, Wnt/β-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/β-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin, Gsk3β, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/β catenin signaling pathways and induction of apoptosis pathway.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  13. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  14. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  15. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  16. Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, et al.
    Hum Mol Genet, 2017 03 15;26(6):1205-1216.
    PMID: 28108556 DOI: 10.1093/hmg/ddx026
    We recently identified ten novel SLE susceptibility loci in Asians and uncovered several additional suggestive loci requiring further validation. This study aimed to replicate five of these suggestive loci in a Han Chinese cohort from Hong Kong, followed by meta-analysis (11,656 cases and 23,968 controls) on previously reported Asian and European populations, and to perform bioinformatic analyses on all 82 reported SLE loci to identify shared regulatory signatures. We performed a battery of analyses for these five loci, as well as joint analyses on all 82 SLE loci. All five loci passed genome-wide significance: MYNN (rs10936599, Pmeta = 1.92 × 10-13, OR = 1.14), ATG16L2 (rs11235604, Pmeta = 8.87 × 10 -12, OR = 0.78), CCL22 (rs223881, Pmeta = 5.87 × 10-16, OR = 0.87), ANKS1A (rs2762340, Pmeta = 4.93 × 10-15, OR = 0.87) and RNASEH2C (rs1308020, Pmeta = 2.96 × 10-19, OR = 0.84) and co-located with annotated gene regulatory elements. The novel loci share genetic signatures with other reported SLE loci, including effects on gene expression, transcription factor binding, and epigenetic characteristics. Most (56%) of the correlated (r2 > 0.8) SNPs from the 82 SLE loci were implicated in differential expression (9.81 × 10-198 
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  17. Nakashima M, Kato M, Aoto K, Shiina M, Belal H, Mukaida S, et al.
    Ann Neurol, 2018 04;83(4):794-806.
    PMID: 29534297 DOI: 10.1002/ana.25208
    OBJECTIVE: The cytoplasmic fragile X mental retardation 1 interacting proteins 2 (CYFIP2) is a component of the WASP-family verprolin-homologous protein (WAVE) regulatory complex, which is involved in actin dynamics. An obvious association of CYFIP2 variants with human neurological disorders has never been reported. Here, we identified de novo hotspot CYFIP2 variants in neurodevelopmental disorders and explore the possible involvement of the CYFIP2 mutants in the WAVE signaling pathway.

    METHODS: We performed trio-based whole-exome sequencing (WES) in 210 families and case-only WES in 489 individuals with epileptic encephalopathies. The functional effect of CYFIP2 variants on WAVE signaling was evaluated by computational structural analysis and in vitro transfection experiments.

    RESULTS: We identified three de novo CYFIP2 variants at the Arg87 residue in 4 unrelated individuals with early-onset epileptic encephalopathy. Structural analysis indicated that the Arg87 residue is buried at an interface between CYFIP2 and WAVE1, and the Arg87 variant may disrupt hydrogen bonding, leading to structural instability and aberrant activation of the WAVE regulatory complex. All mutant CYFIP2 showed comparatively weaker interactions to the VCA domain than wild-type CYFIP2. Immunofluorescence revealed that ectopic speckled accumulation of actin and CYFIP2 was significantly increased in cells transfected with mutant CYFIP2.

    INTERPRETATION: Our findings suggest that de novo Arg87 variants in CYFIP2 have gain-of-function effects on the WAVE signaling pathway and are associated with severe neurological disorders. Ann Neurol 2018;83:794-806.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  18. Jamalpour S, Zain SM, Mosavat M, Mohamed Z, Omar SZ
    Gene, 2018 Apr 15;650:34-40.
    PMID: 29410004 DOI: 10.1016/j.gene.2018.01.091
    BACKGROUND: Although the influence of a common variant in the glucokinase regulatory gene (GCKR rs780094) in type 2 diabetes mellitus has been well documented, less data however, is available of its role in gestational diabetes mellitus (GDM). We carried out a case control study to assess the association between GCKR rs780094 and GDM in the Asian, and also a meta-analysis to further assess the strength of the association.

    METHODS: Demographic, clinical and genotype data were determined for 1122 women (267 cases and 855 controls) recruited from the University of Malaya Medical Centre in the Klang Valley, Kuala Lumpur. Relevant articles were identified from Pubmed, Embase, MEDLINE, and Web of Science. Extraction of data was carried out and summary estimates of the association between rs780094 and GDM were examined.

    RESULTS: The frequency of risk allele C was significantly higher in the cases than controls (OR 1.34, 95% CI 1.09-1.66, P = 0.006). The C allele was also associated with increased level of random 2-hour fasting plasma glucose and pregravid body mass index. Meta-analysis further confirmed the association of the GCKR rs780094 with GDM (OR 1.32, 95% CI 1.14-1.52, P = 0.0001).

    CONCLUSION: This study strongly suggests that GCKR rs780094-C is associated with increased risk of GDM.

    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics*
  19. Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, et al.
    Nat Commun, 2018 07 09;9(1):2372.
    PMID: 29985391 DOI: 10.1038/s41467-018-04590-1
    Dysregulation of the Hippo signaling pathway and the consequent YAP1 activation is a frequent event in human malignancies, yet the underlying molecular mechanisms are still poorly understood. A pancancer analysis of core Hippo kinases and their candidate regulating molecules revealed few alterations in the canonical Hippo pathway, but very frequent genetic alterations in the FAT family of atypical cadherins. By focusing on head and neck squamous cell carcinoma (HNSCC), which displays frequent FAT1 alterations (29.8%), we provide evidence that FAT1 functional loss results in YAP1 activation. Mechanistically, we found that FAT1 assembles a multimeric Hippo signaling complex (signalome), resulting in activation of core Hippo kinases by TAOKs and consequent YAP1 inactivation. We also show that unrestrained YAP1 acts as an oncogenic driver in HNSCC, and that targeting YAP1 may represent an attractive precision therapeutic option for cancers harboring genomic alterations in the FAT1 tumor suppressor genes.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
  20. Chi Soh JE, Abu N, Jamal R
    Immunotherapy, 2018 09;10(12):1093-1104.
    PMID: 30185136 DOI: 10.2217/imt-2018-0044
    The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
    Matched MeSH terms: Adaptor Proteins, Signal Transducing/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links