Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Quar TK, Soli SD, Chan YF, Ishak WS, Abdul Wahat NH
    Int J Audiol, 2017 02;56(2):92-98.
    PMID: 27686009 DOI: 10.1080/14992027.2016.1210828
    OBJECTIVE: This study was conducted to evaluate the speech perception of Malaysian Chinese adults using the Taiwanese Mandarin HINT (MHINT-T) and the Malay HINT (MyHINT).

    DESIGN: The MHINT-T and the MyHINT were presented in quiet and noise (front, right and left) conditions under headphones. Results for the two tests were compared with each other and with the norms for each test.

    STUDY SAMPLE: Malaysian Chinese native speakers of Mandarin (N = 58), 18-31 years of age with normal hearing.

    RESULTS: On average, subjects demonstrated poorer speech perception ability than the normative samples for these tests. Repeated measures ANOVA showed that speech reception thresholds (SRTs) were slightly poorer on the MHINT-T than on the MyHINT for all test conditions. However, normalized SRTs were poorer by 0.6 standard deviations for MyHINT as compared with MHINT-T.

    CONCLUSIONS: MyHINT and MHINT-T can be used as norm-referenced speech perception measures for Mandarin-speaking Chinese in Malaysia.

    Matched MeSH terms: Auditory Threshold
  2. Woei TJ, Mazlan R, Tamil AM, Rosli NSM, Hasbi SM, Hashim ND, et al.
    Int Tinnitus J, 2023 Dec 04;27(1):75-81.
    PMID: 38050889 DOI: 10.5935/0946-5448.20230013
    OBJECTIVE: The purpose of this study was to compare the reliability and accuracy of chirp-based Multiple Auditory Steady State Response (MSSR) and Auditory Brainstem Response (ABR) in children.

    METHODS: The prospective clinical study was conducted at Selayang Hospital (SH) and Hospital Canselor Tuanku Muhriz (HCTM) within one year. A total of 38 children ranging from 3 to 18 years old underwent hearing evaluation using ABR tests and MSSR under sedation. The duration of both tests were then compared.

    RESULTS: The estimated hearing threshold of frequency specific chirp MSSR showed good correlation with ABR especially in higher frequencies such as 2000 Hz and 4000Hz with the value of cronbach alpha of 0.890, 0.933, 0.970 and 0.969 on 500Hz, 1000Hz, 2000Hz and 4000Hz. The sensitivity of MSSR is 0.786, 0.75, 0.957 and 0.889 and specificity is 0.85, 0.882, 0.979 and 0.966 over 500Hz, 1000Hz, 2000Hz and 4000Hz. The duration of MSSR tests were shorter than ABR tests in normal hearing children with an average of 35.3 minutes for MSSR tests and 46.4 minutes for ABR tests. This can also be seen in children with hearing loss where the average duration for MSSR tests is 40.0 minutes and 52.0 minutes for ABR tests.

    CONCLUSION: MSSR showed good correlation and reliability in comparison with ABR especially on higher frequencies. Hence, MSSR is a good clinical test to diagnose children with hearing loss.

    Matched MeSH terms: Auditory Threshold/physiology
  3. Ishak WS, Zhao F, Rajenderkumar D, Arif M
    Int Tinnitus J, 2013;18(1):35-44.
    PMID: 24995898 DOI: 10.5935/0946-5448.20130006
    The general consensus on the roles of hearing loss in triggering tinnitus seems not applicable in patients with normal hearing thresholds. The absence of hearing loss on the audiogram in this group of patients poses a serious challenge to the cochlear theories in explaining tinnitus generation in this group of patients.
    Matched MeSH terms: Auditory Threshold/physiology*
  4. Zakaria MN, Abdul Wahab NA, Awang MA
    Noise Health, 2017 12 2;19(87):112-113.
    PMID: 29192621 DOI: 10.4103/nah.NAH_2_17
    Matched MeSH terms: Auditory Threshold
  5. Dzulkarnain AA, Che Azid N
    Med J Malaysia, 2014 Aug;69(4):156-61.
    PMID: 25500842 MyJurnal
    AIM OF STUDY: This study investigated the consistency in Auditory Brainstem Response (ABR) waveform evaluations between two audiologists (inter-audiologist agreement) and within each of the audiologist (intra-audiologist agreement).
    METHODS: Two audiologists from one of the audiology clinics in Kuantan, Pahang, Malaysia were involved in this study. Both audiologists were required to identify and mark the presence of Waves I, III and V in 66 ABR waveforms. Over a one-month interval, each audiologist was required to carry out the same procedure on the same ABR waveforms. This process was continued until we had three separate reviews from each audiologist.
    RESULTS: There was a high inter-audiologist ABR waveform identification agreement (over the range 81.71-89.77%), but a lower intra-audiologist ABR waveform identification agreement (over the range 50%-78%) for both audiologists. Our results also showed a high intra-audiologist ABR latency agreement within 0.2 ms (>90%), but a slightly lower inter-audiologist latency agreement (75-84%) within 0.2 ms.
    CONCLUSION: Our results support the need for the clinic to implement further strategies for improving the respective lower agreements and consistencies. These include conducting a continuous education program and using an objective algorithm to support their interpretations.

    Study site:; International Islamic University, Malaysia (IIUM) Hearing
    and Speech Clinic
    Matched MeSH terms: Auditory Threshold
  6. Mukari SZMS, Yusof Y, Ishak WS, Maamor N, Chellapan K, Dzulkifli MA
    Braz J Otorhinolaryngol, 2018 12 10;86(2):149-156.
    PMID: 30558985 DOI: 10.1016/j.bjorl.2018.10.010
    INTRODUCTION: Hearing acuity, central auditory processing and cognition contribute to the speech recognition difficulty experienced by older adults. Therefore, quantifying the contribution of these factors on speech recognition problem is important in order to formulate a holistic and effective rehabilitation.

    OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.

    METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.

    RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.

    CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.

    Matched MeSH terms: Auditory Threshold/physiology*
  7. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 01 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Auditory Threshold/physiology*
  8. Abdelatti ZAS, Hartbauer M
    Hear Res, 2017 11;355:70-80.
    PMID: 28974384 DOI: 10.1016/j.heares.2017.09.011
    In forest clearings of the Malaysian rainforest, chirping and trilling Mecopoda species often live in sympatry. We investigated whether a phenomenon known as stochastic resonance (SR) improved the ability of individuals to detect a low-frequent signal component typical of chirps when members of the heterospecific trilling species were simultaneously active. This phenomenon may explain the fact that the chirping species upholds entrainment to the conspecific song in the presence of the trill. Therefore, we evaluated the response probability of an ascending auditory neuron (TN-1) in individuals of the chirping Mecopoda species to triple-pulsed 2, 8 and 20 kHz signals that were broadcast 1 dB below the hearing threshold while increasing the intensity of either white noise or a typical triller song. Our results demonstrate the existence of SR over a rather broad range of signal-to-noise ratios (SNRs) of input signals when periodic 2 kHz and 20 kHz signals were presented at the same time as white noise. Using the chirp-specific 2 kHz signal as a stimulus, the maximum TN-1 response probability frequently exceeded the 50% threshold if the trill was broadcast simultaneously. Playback of an 8 kHz signal, a common frequency band component of the trill, yielded a similar result. Nevertheless, using the trill as a masker, the signal-related TN-1 spiking probability was rather variable. The variability on an individual level resulted from correlations between the phase relationship of the signal and syllables of the trill. For the first time, these results demonstrate the existence of SR in acoustically-communicating insects and suggest that the calling song of heterospecifics may facilitate the detection of a subthreshold signal component in certain situations. The results of the simulation of sound propagation in a computer model suggest a wide range of sender-receiver distances in which the triller can help to improve the detection of subthreshold signals in the chirping species.
    Matched MeSH terms: Auditory Threshold
  9. Balachandran R, Prepageran N, Prepagaran N, Rahmat O, Zulkiflee AB, Hufaida KS
    J Laryngol Otol, 2012 Apr;126(4):345-8.
    PMID: 22310164 DOI: 10.1017/S0022215112000047
    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation.
    Matched MeSH terms: Auditory Threshold/radiation effects
  10. Rasidi WNA, Seluakumaran K, Jamaluddin SA
    Eur Arch Otorhinolaryngol, 2023 Oct;280(10):4391-4400.
    PMID: 36988687 DOI: 10.1007/s00405-023-07929-7
    PURPOSE: Pure-tone audiometry (PTA) is the gold standard for screening and diagnosis of hearing loss but is not always accessible. This study evaluated a simplified cochlear frequency selectivity (FS) measure as an alternative option to screen for early frequency-specific sensorineural hearing loss (SNHL).

    METHODS: FS measures at 1 and 4 kHz center frequencies were obtained using a custom-made software in normal-hearing (NH), slight SNHL and mild-to-moderate SNHL subjects. For comparison, subjects were also assessed with the Malay Digit Triplet Test (DTT) and the shortened Malay Speech, Spatial and Qualities of Hearing Scale (SSQ) questionnaire.

    RESULTS: Compared to DTT and SSQ, the FS measure at 4 kHz was able to distinguish NH from slight and mild-to-moderate SNHL subjects, and was strongly correlated with their thresholds in quiet determined separately in 1-dB step sizes at the similar test frequency. Further analysis with receiver operating characteristic (ROC) curves indicated area under the curve (AUC) of 0.77 and 0.83 for the FS measure at 4 kHz when PTA thresholds of NH subjects were taken as ≤ 15 dB HL and ≤ 20 dB HL, respectively. At the optimal FS cut-off point for 4 kHz, the FS measure had 77.8% sensitivity and 86.7% specificity to detect 20 dB HL hearing loss.

    CONCLUSION: FS measure was superior to DTT and SSQ questionnaire in detecting early frequency-specific threshold shifts in SNHL subjects, particularly at 4 kHz. This method could be used for screening subjects at risk of noise-induced hearing loss.

    Matched MeSH terms: Auditory Threshold
  11. Sayapathi BS, Su AT, Koh D
    J Occup Health, 2014;56(1):1-11.
    PMID: 24270928
    OBJECTIVES: A systematic review was conducted to identify the effectiveness of different permissible exposure limits in preserving the hearing threshold level. This review compared the limits of the US National Institute of Occupational Safety and Health with those of the US Occupational Safety and Health Administration. The prevalence of occupational noise-induced hearing loss is on an increasing trend globally. This review was performed to reduce the prevalence of noise-induced hearing loss.

    METHODS: We searched 3 major databases, i.e., PubMed, Embase and Lippincott Williams & Wilkins Journals@Ovid, for studies published up until 1May 2013 without language restrictions. All study designs were included in this review. The studies were identified and retrieved by two independent authors.

    RESULTS: Of 118 titles scanned, 14 duplicates were removed, and a total of 13 abstracts from all three databases were identified for full-text retrieval. From the full text, eight articles met the inclusion criteria for this systematic review. These articles showed acceptable quality based on our scoring system. Most of the studies indicated that temporary threshold shifts were much lower when subjects were exposed to a noise level of 85 dBA or lower.

    CONCLUSIONS: There were more threshold shifts in subjects adopting 90 dBA compared with 85 dBA. These temporary threshold shifts may progress to permanent shifts over time. Action curtailing noise exposure among employees would be taken earlier on adoption of 85 dBA as the permissible exposure limit, and hence prevalence of noise-induced hearing loss may be reduced.

    Matched MeSH terms: Auditory Threshold/physiology
  12. Govindaraju R, Omar R, Rajagopalan R, Norlisah R, Kwan-Hoong N
    Auris Nasus Larynx, 2011 Aug;38(4):519-22.
    PMID: 21236610 DOI: 10.1016/j.anl.2010.12.006
    The higher field strength magnetic resonance imaging (MRI) such as 3 Tesla (T) and above generates noise that has potential detrimental effects on the hearing. Temporary threshold shifts following MRI examination have been reported for MRI with lower field strength. Such effect, however, have not been reported so far for a 3T MRI. We report a case that exemplifies the possible detrimental effects of a 3 T MRI generated noise on the auditory system. Our patient underwent investigation of his chronic backache in a 3 T MRI unit and developed hearing loss and tinnitus post-MRI examination. Hearing assessment was done using pure tone audiogram, distortion product otoacoustic emission (DPOAE) and brainstem electrical response audiometry (BERA) which revealed a unilateral sensorineural hearing loss which recovered within 3 days. However the tinnitus persisted. This is possibly a case of temporary threshold shift following noise exposure. However a sudden sensorineural hearing loss remains the other possibility.
    Matched MeSH terms: Auditory Threshold
  13. Quar TK, Mukari SZ, Abdul Wahab NA, Abdul Razak R, Omar M, Maamor N
    Int J Audiol, 2008 Jun;47(6):379-80.
    PMID: 18569117 DOI: 10.1080/14992020801886796
    Matched MeSH terms: Auditory Threshold
  14. Jamal FN, Arafat Dzulkarnain AA, Shahrudin FA, Marzuki MN
    J Audiol Otol, 2021 Jan;25(1):14-21.
    PMID: 32575950 DOI: 10.7874/jao.2020.00073
    BACKGROUND AND OBJECTIVES: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults.

    SUBJECTS AND METHODS: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC).

    RESULTS: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent.

    CONCLUSIONS: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

    Matched MeSH terms: Auditory Threshold
  15. Dzulkarnain AAA, Shahrudin FA, Jamal FN, Marzuki MN, Mazlan MNS
    Am J Audiol, 2020 Dec 09;29(4):838-850.
    PMID: 32966099 DOI: 10.1044/2020_AJA-20-00049
    Purpose The purpose of this study is to investigate the influence of stimulus repetition rates on the auditory brainstem response (ABR) to Level-Specific (LS) CE-Chirp and click stimuli at multiple intensity levels in normal-hearing adults. Method A repeated-measure study design was used on 13 normal-hearing adults. ABRs were acquired from the study participants using LS CE-Chirp and click stimuli at four stimulus repetition rates (19.1, 33.3, 61.1, and 81.1 Hz) and four intensity levels (80, 60, 40, and 20 dB nHL). The ABR test was stopped at 40-nV residual noise level. Results High-stimulus repetition rates caused the ABR latencies to be longer and have reduced amplitudes in both ABR to LS CE-Chirp and click stimuli. The ABR to LS CE-Chirp Wave I, III, and V amplitudes were larger than ABR to click in almost all the stimulus repetition rates. However, there were no differences in the number of averages required to reach the stopping criterion between ABR to LS CE-Chirp and click stimulus, and between high-stimulus repetition rates and low-stimulus repetition rates. Conclusion The LS CE-Chirp at standard low-stimulus repetition rates can be used to elicit ABR for both neurodiagnostic and threshold seeking procedure.
    Matched MeSH terms: Auditory Threshold
  16. Dzulkarnain AAA, Noor Ibrahim SHM, Anuar NFA, Abdullah SA, Tengku Zam Zam TZH, Rahmat S, et al.
    Int J Audiol, 2017 Oct;56(10):723-732.
    PMID: 28415891 DOI: 10.1080/14992027.2017.1313462
    OBJECTIVE: To investigate the influence of two different electrode montages (ipsilateral: reference to mastoid and vertical: reference to nape of neck) to the ABR results recorded using a level-specific (LS)-CE-Chirp® in normally hearing subjects at multiple intensities levels.

    DESIGN: Quasi-experimental and repeated measure study designs were applied in this study. Two different stopping criteria were used, (1) a fixed-signal averaging 4000 sweeps and, (2) a minimum quality indicator of Fmp = 3.1 with a minimum of 800 sweeps.

    STUDY SAMPLE: Twenty-nine normally hearing adults (18 females, 11 male) participated.

    RESULTS: Wave V amplitudes were significantly larger in the LS CE-Chirp® recorded from the vertical montage than the ipsilateral montage. Waves I and III amplitudes were significantly larger from the ipsilateral LS CE-Chirp® than from the other montages and stimulus combinations. The differences in the quality of the ABR recording between the vertical and ipsilateral montages were marginal.

    CONCLUSIONS: Overall, the result suggested that the vertical LS CE-Chirp® ABR had a high potential for a threshold-seeking application, because it produced a higher wave V amplitude. The Ipsilateral LS CE-Chirp® ABR, on the other hand, might also have a high potential for the site of lesion application, because it produced larger waves I and III amplitudes.

    Matched MeSH terms: Auditory Threshold
  17. Nashrah Maamor, Sitti Ladyia Salleh, Nurul Ain Abdullah
    MyJurnal
    The objective of this study was to investigate the degree to which Auditory Steady State Response (ASSR) thresholds correlate with behavioral thresholds in two groups of adult subjects, one with normal hearing and the other with sensorineural hearing impairment. When the relationship between ASSR and behavioral thresholds were analyzed separately according to different groups of subjects, significant correlations were only found for the hearing impaired group. The mean differences between the actual and the predicted thresholds derived from linear regression analysis for that group of subjects were found to be 5 dB (SD = 4), 3 dB (SD = 3), 4 dB (SD = 3) and 4 dB (SD = 4) with correlation coefficients of 0.80, 0.88, 0.91 and 0.97 for the 500, 1000, 2000 and 4000 Hz carrier frequencies, respectively. When the relationship between ASSR and behavioral thresholds were analyzed using data from both groups of subjects, correlation coefficients were found to be higher across carrier frequencies of 500 to 4000 Hz (r ³ 0.96) with mean differences between the actual and the predicted thresholds of 6 dB (SD = 3), 4 dB (SD = 3), 4 dB (SD = 3) and 6 dB (SD = 3) for the hearing impaired group and 11dB (SD = 7), 8 dB (SD = 8), 8 dB (SD = 6) and 10 dB (SD = 7) for the normal hearing group. However, it was observed that the range of differences between the actual and the predicted thresholds were quite large reaching 34 dB for the 500 and 4000 Hz carrier frequencies. This suggests that in clinical setting, ASSR cannot predict the presence or absence of a hearing loss accurately. In general, it can be concluded that ASSR allow for an accurate prediction of behavioral thresholds within ± 10 dB in subjects with hearing impairment. However, ASSR cannot accurately predict hearing thresholds in normally hearing individuals.
    Key words: auditory steady-state response threshold, behavioral threshold, adult, normal hearing, hearing impairment
    Matched MeSH terms: Auditory Threshold
  18. Rahmat S, O'Beirne GA
    Hear Res, 2015 Dec;330(Pt A):125-33.
    PMID: 26209881 DOI: 10.1016/j.heares.2015.07.013
    Schroeder-phase masking complexes have been used in many psychophysical experiments to examine the phase curvature of cochlear filtering at characteristic frequencies, and other aspects of cochlear nonlinearity. In a normal nonlinear cochlea, changing the "scalar factor" of the Schroeder-phase masker from -1 through 0 to +1 results in a marked difference in the measured masked thresholds, whereas this difference is reduced in ears with damaged outer hair cells. Despite the valuable information it may give, one disadvantage of the Schroeder-phase masking procedure is the length of the test - using the conventional three-alternative forced-choice technique to measure a masking function takes around 45 min for one combination of probe frequency and intensity. As an alternative, we have developed a fast method of recording these functions which uses a Békésy tracking procedure. Testing at 500 Hz in normal hearing participants, we demonstrate that our fast method: i) shows good agreement with the conventional method; ii) shows high test-retest reliability; and iii) shortens the testing time to 8 min.
    Matched MeSH terms: Auditory Threshold
  19. Phoon WO, Ong CN, Foo SC, Plueksawan W
    Ann Acad Med Singap, 1984 Apr;13(2 Suppl):408-16.
    PMID: 6497345
    This study was conducted on 506 firemen in Singapore. Interviews, pulmonary function tests and audiometry were conducted. With regard to pulmonary function, the results showed that forced vital capacity (FVC) increased up to the age of 25-30 years for both Chinese and Malays. Both FVC and forced expiratory volume in one second (FEV1.0) increased with standing height over the whole age range studied. The mean values of FVC and FEV1.0 were higher in Chinese. It was also found that the FEV1 of the subjects in the study showed a greater decline in rate with age than other workers studied by the authors previously. The hearing threshold of 83 fire fighters showed a prominent upward shift of 6-8 KHz at ages 20-30. This upward shift was more pronounced in the right ear. The implications of the findings are discussed and a comparison with results of other similar studies in other countries is made.
    Matched MeSH terms: Auditory Threshold*
  20. Dzulkarnain AAA, Abdullah SA, Ruzai MAM, Ibrahim SHMN, Anuar NFA, Rahim 'EA
    Am J Audiol, 2018 Sep 12;27(3):294-305.
    PMID: 30054628 DOI: 10.1044/2018_AJA-17-0087
    Purpose: The purpose of this study was to investigate the influence of 2 different electrode montages (ipsilateral and vertical) on the auditory brainstem response (ABR) findings elicited from narrow band (NB) level-specific (LS) CE-Chirp and tone-burst in subjects with normal hearing at several intensity levels and frequency combinations.

    Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).

    Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.

    Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.

    Matched MeSH terms: Auditory Threshold/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links