Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2019 11;92:103201.
    PMID: 31445195 DOI: 10.1016/j.bioorg.2019.103201
    We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a-4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a-4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
  2. Zaman K, Rahim F, Taha M, Wadood A, Adnan Ali Shah S, Gollapalli M, et al.
    Bioorg Chem, 2019 08;89:102999.
    PMID: 31151055 DOI: 10.1016/j.bioorg.2019.102999
    Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ± 0.20 to 69.30 ± 1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  3. Rehman A, Aslam SJ, Abbasi MA, Siddiqui SZ, Rasool S, Shah SAA
    Pak J Pharm Sci, 2019 May;32(3):987-996.
    PMID: 31278711
    Heterocyclic chemistry is an important field of organic chemistry due to therapeutic potential. The minor modification in the structure of poly-functional compounds has great effect on therapeutic ability. In the presented research work, substituted 1,3,4-oxadiazole derivatives, 8a-p, have been synthesized by the reaction of 1-(4-bromomethylbenzenesulfonyl)-3-methylpiperidine (7) and 5-substituted-1,3,4-oxadiazole-2-thiol (4a-p). The 5-substituted-1,3,4-oxadiazole-2-thiol were synthesized by converting carboxylic acids correspondingly into esters, hydrazides and oxadiazoles. Secondly the electrophile, 1-(4-Bromomethylbenzenesulfonyl)-3-methylpiperidine (7), was prepared by the reaction of 3-methylpiperidine with 4-bromomethylbenzenesulfonyl chloride in the presence of water and Na2CO3 under pH of 9-10. The compounds were structurally corroborated through spectroscopic data analysis of IR, EI-MS and 1H-NMR. The screening for antibacterial activity revealed the compounds to be moderate to excellent inhibitors against bacteria under study. Anti-enzymatic activity was assessed against urease enzyme and 1-{[4-({[5-(3-nitrophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)phenyl]sulfonyl}-3-methylpiperidine (8d) was the most active one.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  4. Rehman A, Abbasi MA, Siddiqui SZ, Mohyuddin A, Nadeem S, Shah SA
    Pak J Pharm Sci, 2016 Sep;29(5):1489-1496.
    PMID: 27731801
    New potent organic compounds were synthesized with an aim of good biological activities such as antibacterial and anti-enzymatic. Three series of sulfonamide derivatives were synthesized by treating N-alkyl/aryl substituted amines (2a-f) with 4-chlorobenzensulfonyl chloride (1) to yield N-alkyl/aryl-4-chlorobenzenesulfonamide(3af) that was then derivatized by gearing up with ethyl iodide (4), benzyl chloride (5) and 4-chlorobenzyl chloride (6) using sodium hydride as base to initialize the reaction in a polar aprotic solvent (DMF) to synthesize the derivatives, 7a-f, 8af and 9a-f respectively. Structure elucidation was brought about by IR, 1H-NMR and EIMS spectra for all the synthesized molecules which were evaluated for their antibacterial activities and inhibitory potentials for certain enzymes.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
  5. Taha M, Adnan Ali Shah S, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg Chem, 2018 08;78:17-23.
    PMID: 29525348 DOI: 10.1016/j.bioorg.2018.02.028
    Thymidine phosphorylase (TP) over expression plays role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. The inhibitor of this enzyme plays an important role in preventing the serious threat due to over expression of TP. In this regard, a series of seventeenanalogs of 3-formylcoumarin (1-17) were synthesized, characterized by 1HNMR and EI-MS and screened for thymidine phosphorylaseinhibitory activity. All analogs showed a variable degree of thymidine phosphorylase inhibition with IC50 values ranging between 0.90 ± 0.01 and 53.50 ± 1.20 μM when compared with the standard inhibitor 7-Deazaxanthine having IC50 value 38.68 ± 1.12 μM. Among the series, fifteenanalogs such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17 showed excellent inhibition which is many folds better than the standard 7-Deazaxanthine whiletwo analogs 13 and 14 showed good inhibition. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl ring. Molecular docking study was carried out to understand the binding interaction of the most active analogs.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  6. Ullah H, Rahim F, Taha M, Uddin I, Wadood A, Shah SAA, et al.
    Bioorg Chem, 2018 08;78:58-67.
    PMID: 29533215 DOI: 10.1016/j.bioorg.2018.02.020
    We have synthesized oxadiazole derivatives (1-16), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  7. Taha M, Rahim F, Ullah H, Wadood A, Farooq RK, Shah SAA, et al.
    Sci Rep, 2020 06 30;10(1):10673.
    PMID: 32606439 DOI: 10.1038/s41598-020-67414-7
    In continuation of our work on enzyme inhibition, the benzofuran-based-thiazoldinone analogues (1-14) were synthesized, characterized by HREI-MS, 1H and 13CNMR and evaluated for urease inhibition. Compounds 1-14 exhibited a varying degree of urease inhibitory activity with IC50 values between 1.2 ± 0.01 to 23.50 ± 0.70 µM when compared with standard drug thiourea having IC50 value 21.40 ± 0.21 µM. Compound 1, 3, 5 and 8 showed significant inhibitory effects with IC50 values 1.2 ± 0.01, 2.20 ± 0.01, 1.40 ± 0.01 and 2.90 ± 0.01 µM respectively, better than the rest of the series. A structure activity relationship (SAR) of this series has been established based on electronic effects and position of different substituents present on phenyl ring. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
  8. Zaman K, Rahim F, Taha M, Ullah H, Wadood A, Nawaz M, et al.
    Bioorg Chem, 2019 08;89:103024.
    PMID: 31176853 DOI: 10.1016/j.bioorg.2019.103024
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1-19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  9. Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, et al.
    Bioorg Chem, 2021 10;115:105199.
    PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199
    Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  10. Abbasi MA, Hassan M, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Shah SAA, et al.
    Bioorg Med Chem, 2018 07 30;26(13):3791-3804.
    PMID: 29903414 DOI: 10.1016/j.bmc.2018.06.005
    The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a-l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a-l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58 ± 0.02 µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11 ± 0.12 µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a-l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (-7.10 kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
  11. Javid MT, Rahim F, Taha M, Nawaz M, Wadood A, Ali M, et al.
    Bioorg Chem, 2018 09;79:323-333.
    PMID: 29803079 DOI: 10.1016/j.bioorg.2018.05.011
    Thymidine phosphorylase is an enzyme involved in pyrimidine salvage pathway that is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is enormously up regulated in a variety of solid tumors. Furthermore, surpassing of TP level protects tumor cells from apoptosis and helps cell survival. Thus TP is identified as a prime target for developing novel anticancer therapies. A new class of exceptionally potent isatin based oxadiazole (1-30) has been synthesized and evaluated for thymidine phosphorylase inhibitory potential. All analogs showed potent thymidine phosphorylase inhibition when compared with standard 7-Deazaxanthine, 7DX (IC50 = 38.68 ± 1.12 µM). Molecular docking study was performed in order to determine the binding interaction of these newly synthesized compounds, which revealed that these synthesized compounds established stronger hydrogen bonding network with active site of residues as compare to the standard compound 7DX.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  12. Abbasi MA, Raza H, Rehman AU, Siddiqui SZ, Nazir M, Mumtaz A, et al.
    Drug Res (Stuttg), 2019 Feb;69(2):111-120.
    PMID: 30086567 DOI: 10.1055/a-0654-5074
    In this study, a new series of sulfonamides derivatives was synthesized and their inhibitory effects on DPPH and jack bean urease were evaluated. The in silico studies were also applied to ascertain the interactions of these molecules with active site of the enzyme. Synthesis was initiated by the nucleophilic substitution reaction of 2-(4-methoxyphenyl)-1-ethanamine (1: ) with 4-(acetylamino)benzenesulfonyl chloride (2): in aqueous sodium carbonate at pH 9. Precipitates collected were washed and dried to obtain the parent molecule, N-(4-{[(4-methoxyphenethyl)amino]sulfonyl}phenyl)acetamide (3): . Then, this parent was reacted with different alkyl/aralkyl halides, (4A-M: ), using dimethylformamide (DMF) as solvent and LiH as an activator to produce a series of new N-(4-{[(4-methoxyphenethyl)-(substituted)amino]sulfonyl}phenyl)acetamides (5A-M: ). All the synthesized compounds were characterized by IR, EI-MS, 1H-NMR, 13C-NMR and CHN analysis data. All of the synthesized compounds showed higher urease inhibitory activity than the standard thiourea. The compound 5 F: exhibited very excellent enzyme inhibitory activity with IC50 value of 0.0171±0.0070 µM relative to standard thiourea having IC50 value of 4.7455±0.0546 µM. Molecular docking studies suggested that ligands have good binding energy values and bind within the active region of taget protein. Chemo-informatics properties were evaluated by computational approaches and it was found that synthesized compounds mostly obeyed the Lipinski' rule.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  13. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  14. Zaman K, Rahim F, Taha M, Wadood A, Shah SAA, Ahmed QU, et al.
    Sci Rep, 2019 11 05;9(1):16015.
    PMID: 31690793 DOI: 10.1038/s41598-019-52100-0
    Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
  15. Rahim F, Taha M, Ullah H, Wadood A, Selvaraj M, Rab A, et al.
    Bioorg Chem, 2019 10;91:103112.
    PMID: 31349115 DOI: 10.1016/j.bioorg.2019.103112
    Alpha-amylase and urease enzyme over expression endorses various complications like rheumatoid arthritis, urinary tract infection, colon cancer, metabolic disorder, cardiovascular risk, and chronic kidney disease. To overcome these complications, we have synthesized new arylhydrazide bearing Schiff bases/thiazolidinone analogues as α-amylase and urease inhibitors. The analogues 1a-r were evaluated for α-amylase inhibitory potential. All analogues were found active and show IC50 value ranging between 0.8 ± 0.05 and 12.50 ± 0.5 μM as compare to standard acarbose (IC50 = 1.70 ± 0.10 μM). Among the synthesized analogs, compound 1j, 1r, 1k, 1e, 1b and 1f having IC50 values 0.8 ± 0.05, 0.9 ± 0.05, 1.00 ± 0.05, 1.10 ± 0.10, 1.20 ± 0.10 and 1.30 ± 0.10 μM respectively showed an excellent inhibitory potential. Analogs 2a-o were evaluated against urease activity. All analogues were found active and show IC50 value ranging between 4.10 ± 0.02 and 38.20 ± 1.10 μM as compare to standard thiourea (IC50 = 21.40 ± 0.21 μM). Among the synthesized analogs, compound 2k, 2a, 2h, 2j, 2f, 2e, 2g, 2b and 2l having IC50 values 4.10 ± 0.02, 4.60 ± 0.02, 4.70 ± 0.03, 5.40 ± 0.02, 6.70 ± 0.05, 8.30 ± 0.3, 11.20 ± 0.04, 16.90 ± 0.8 and 19.80 ± 0.60 μM respectively showed an excellent inhibitory potential. All compounds were characterized through 1H, 13C NMR and HR-EIMS analysis. Structure activity relationship of the synthesized analogs were recognized and confirmed through molecular docking studies.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  16. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al.
    Bioorg Chem, 2016 Jun;66:111-6.
    PMID: 27140727 DOI: 10.1016/j.bioorg.2016.04.005
    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  17. Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, et al.
    Bioorg Med Chem, 2014 Jul 1;22(13):3449-54.
    PMID: 24844756 DOI: 10.1016/j.bmc.2014.04.039
    2-Arylquinazolin-4(3H)-ones 1-25 were synthesized by reacting anthranilamide with various benzaldehydes using CuCl2·2H2O as a catalyst in ethanol under reflux. Synthetic 2-arylquinazolin-4(3H)-ones 1-25 were evaluated for their β-glucuronidase inhibitory potential. A trend of inhibition IC50 against the enzyme in the range of 0.6-198.2μM, was observed and compared with the standard d-saccharic acid 1,4-lactone (IC50=45.75±2.16μM). Compounds 13, 19, 4, 12, 14, 22, 23, 25, 15, 8, 17, 11, 21, 1, 3, 18, 9, 2, and 24 with the IC50 values within the range of 0.6-44.0μM, indicated that the compounds have superior activity than the standard. The compounds showed no cytotoxic effects against PC-3 cells. A structure-activity relationship is established.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  18. Taha M, Tariq Javid M, Imran S, Selvaraj M, Chigurupati S, Ullah H, et al.
    Bioorg Chem, 2017 10;74:179-186.
    PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003
    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  19. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Raza H, Hassan M, et al.
    Bioorg Chem, 2019 05;86:459-472.
    PMID: 30772647 DOI: 10.1016/j.bioorg.2019.01.036
    The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis
  20. Khan KM, Rahim F, Khan A, Shabeer M, Hussain S, Rehman W, et al.
    Bioorg Med Chem, 2014 Aug 1;22(15):4119-23.
    PMID: 24986232 DOI: 10.1016/j.bmc.2014.05.057
    A series of thiobarbituric acid derivatives 1-27 were synthesized and evaluated for their urease inhibitory potential. Exciting results were obtained from the screening of these compounds 1-27. Compounds 5, 7, 8, 11, 16, 17, 22, 23 and 24 showed excellent urease inhibition with IC50 values 18.1 ± 0.52, 16.0 ± 0.45, 16.0 ± 0.22, 14.3 ± 0.27, 6.7 ± 0.27, 10.6 ± 0.17, 19.2 ± 0.29, 18.2 ± 0.76 and 1.61 ± 0.18 μM, respectively, much better than the standard urease inhibitor thiourea (IC₅₀=21 ± 0.11 μM). Compound 3, 4, 10, and 26 exhibited comparable activities to the standard with IC₅₀ values 21.4 ± 1.04 and 21.5 ± 0.61 μM, 22.8 ± 0.32, 25.2 ± 0.63, respectively. However the remaining compounds also showed prominent inhibitory potential The structure-activity relationship was established for these compounds. This study identified a novel class of urease inhibitors. The structures of all compounds were confirmed through spectroscopic techniques such as EI-MS and (1)H NMR.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links