Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Zaman K, Rahim F, Taha M, Wadood A, Shah SAA, Ahmed QU, et al.
    Sci Rep, 2019 11 05;9(1):16015.
    PMID: 31690793 DOI: 10.1038/s41598-019-52100-0
    Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.
    Matched MeSH terms: Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry
  2. Zainol MKM, Linforth RJC, Winzor DJ, Scott DJ
    Eur Biophys J, 2021 Dec;50(8):1103-1110.
    PMID: 34611772 DOI: 10.1007/s00249-021-01572-y
    This investigation of the temperature dependence of DppA interactions with a subset of three dipeptides (AA. AF and FA) by isothermal titration calorimetry has revealed the negative heat capacity ([Formula: see text]) that is a characteristic of hydrophobic interactions. The observation of enthalpy-entropy compensation is interpreted in terms of the increased structuring of water molecules trapped in a hydrophobic environment, the enthalpic energy gain from which is automatically countered by the entropy decrease associated with consequent loss of water structure flexibility. Specificity for dipeptides stems from appropriate spacing of designated DppA aspartate and arginine residues for electrostatic interaction with the terminal amino and carboxyl groups of a dipeptide, after which the binding pocket closes to become completely isolated from the aqueous environment. Any differences in chemical reactivity of the dipeptide sidechains are thereby modulated by their occurrence in a hydrophobic environment where changes in the structural state of entrapped water molecules give rise to the phenomenon of enthalpy-entropy compensation. The consequent minimization of differences in the value of ΔG0 for all DppA-dipeptide interactions thus provides thermodynamic insight into the biological role of DppA as a transporter of all dipeptides across the periplasmic membrane.
    Matched MeSH terms: Escherichia coli Proteins*
  3. Yu CY, Ang GY, Chin PS, Ngeow YF, Yin WF, Chan KG
    Int J Antimicrob Agents, 2016 Jun;47(6):504-5.
    PMID: 27208898 DOI: 10.1016/j.ijantimicag.2016.04.004
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  4. Yu CY, Ang GY, Chong TM, Chin PS, Ngeow YF, Yin WF, et al.
    J Antimicrob Chemother, 2017 04 01;72(4):1253-1255.
    PMID: 28031273 DOI: 10.1093/jac/dkw541
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  5. Wan Makhtar WR, Mohd Azlan M, Hassan NH, Aziah I, Samsurizal NH, Yusof NY
    Microbiol Resour Announc, 2020 Aug 13;9(33).
    PMID: 32817162 DOI: 10.1128/MRA.01497-19
    We describe here the draft genome sequence and basic characteristics of Escherichia coli isolate INF13/18/A, which was isolated from Universiti Sains Malaysia (USM) Hospital. This isolate was identified as an extended-spectrum β-lactamase-producing Escherichia coli strain harboring the antimicrobial resistance genes TEM, CTX-M-1, and CTX-M-9.
    Matched MeSH terms: Escherichia coli Proteins
  6. Ugwu IC, Lee-Ching L, Ugwu CC, Okoye JOA, Chah KF
    Iran J Vet Res, 2020;21(3):180-187.
    PMID: 33178295
    Background: Avian pathogenic Escherichia coli (APEC) strains have been associated with various disease conditions in avian species due to virulence attributes associated with the organism.

    Aims: This study was carried out to determine the in vitro pathogenic characteristics and virulence encoding genes found in E. coli strains associated with colibacillosis in chickens.

    Methods: Fifty-two stock cultures of E. coli strains isolated from chickens diagnosed of colibacillosis were tested for their ability to produce haemolysis on blood agar and take up Congo red dye. Molecular characterization was carried out by polymerase chain reaction (PCR) amplification of virulence encoding genes associated with APEC.

    Results: Eleven (22%) and 41 (71%) were positive for haemolysis on 5% sheep red blood agar and Congo red agar, respectively. Nine virulence-associated genes were detected as follows: FimH (96%), csgA (52%), iss (48%), iut (33%), tsh (21%), cva (15%), kpsII (10%), pap (2%), and felA (2%).

    Conclusion: The APEC strains exhibited virulence properties and harbored virulence encoding genes which could be a threat to the poultry population and public health. The putative virulence genes were diverse and different in almost all isolate implying that pathogenesis was multi-factorial and the infection was multi-faceted which could be a source of concern in the detection and control of APEC infections.

    Matched MeSH terms: Escherichia coli Proteins
  7. Tang SW, Abubakar S, Devi S, Puthucheary S, Pang T
    Infect Immun, 1997 Jul;65(7):2983-6.
    PMID: 9199477
    The heat shock protein (HSP) response of Salmonella typhi following exposure to elevated growth temperatures was studied. Three major proteins with molecular sizes of 58, 68, and 88 kDa were abundantly expressed when S. typhi cells were shifted from 37 to 45 degrees C and to 55 degrees C. These proteins were also constitutively expressed at 37 degrees C. Western blotting and immunoprecipitation studies with anti-HSP monoclonal antibodies revealed that the 58- and 68-kDa proteins were analogous to the GroEL and DnaK proteins, respectively, of Escherichia coli. These HSPs are also abundantly present in the outer membrane fraction of disrupted cells and, to a lesser extent, in the cytosol. Immunoblotting experiments with sera from patients with a culture-positive diagnosis of typhoid fever showed the presence of antibodies to these HSPs. Nine of twelve sera reacted with the 58-, 68-, and 88-kDa proteins, while three sera reacted only with the 68- and 88-kDa proteins. All 10 sera from healthy individuals showed no binding to these HSPs. In light of the well-documented roles of HSPs in the pathogenesis of microbial infections and as immunodominant antigens, these findings may be relevant for a better understanding of disease processes and for the future development of diagnostic and preventive strategies.
    Matched MeSH terms: Escherichia coli Proteins*
  8. Sung YY, Ashame MF, Chen S, Macrae TH, Sorgeloos P, Bossier P
    J Fish Dis, 2009 Aug;32(8):675-85.
    PMID: 19515074 DOI: 10.1111/j.1365-2761.2009.01046.x
    Among their numerous physiological effects, heat shock proteins (Hsps) are potent immunomodulators, a characteristic reflecting their potential as therapeutic agents and which led to their application in combating infection. As an example, the up-regulation of endogenous Hsp70 in the branchiopod crustacean Artemia franciscana (Kellogg) is concurrent with shielding against bacterial infection. To better understand this protective mechanism, gnotobiotic Artemia were fed with Escherichia coli treated to over-produce different prokaryotic Hsps. This was shown to increase larval resistance to experimental Vibrio campbellii exposure. Immunoprobing of Western blots showed that the enhanced resistance to V. campbellii correlated with DnaK production in E coli. A definitive role for DnaK was then demonstrated by feeding Artemia larvae with transformed bacteria over-producing only this protein, although other Hsps such as DnaJ and grpE also provided tolerance against Vibrio infection. Feeding of bacteria synthesizing selected Hsps is therefore suggested as an alternative to antibiotic use as a means of enhancing resistance of Artemia larvae to bacterial infection, which may have potential applications in aquaculture.
    Matched MeSH terms: Escherichia coli Proteins/metabolism
  9. Sultana A, Tiash S
    J Control Release, 2021 04 10;332:233-244.
    PMID: 33561481 DOI: 10.1016/j.jconrel.2021.02.004
    E. coli mediated gene delivery faces a major drawback of low efficiency despite of being a safer alternative to viral vectors. This study showed a novel, simple and effective strategy to enhance invasive E. coli DH10B vector's efficiency in human epithelial cells. The bactofection efficiency of invasive E .coli vector was analyzed in nine cell lines. It demonstrated highest (16%) reporter gene (GFP) expression in cervical cells. Methods were employed to further enhance its efficiency by adding transfection reagents (trans-bactofection method) to promote entry into host cells, lysosomotropic reagents for escape from lysosomal degradation or antibiotics to lyse internalized bacteria. Increased bacterial entry, as elucidated from nil to 3% expression in liver cells, was obtained upon complexing bacteria with PULSin. Chloroquine mediated endosomal escape resulted in 7.2 folds increase whereas tetracycline addition to lyse internalized bacteria caused ≈90% of GFP in HeLa. Eventually, the combined effect of these three methods exhibited close to 100% GFP in cervical and remarkable increase of 138 folds in breast cells. This is the first study showing comparative study of vector's gene delivery ability in various epithelial cells of the human body with improving its delivery efficiency. These data demonstrated the potential of developed bactofection method to boost up the efficiency of other bacterial vectors also, which could further be used for effectual therapeutic gene delivery in human cells.
    Matched MeSH terms: Escherichia coli Proteins*
  10. Seder N, Abu Bakar MH, Abu Rayyan WS
    PMID: 33488102 DOI: 10.2147/AABC.S292143
    Introduction: Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome.

    Methods: In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey.

    Results: Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation.

    Conclusion: We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.

    Matched MeSH terms: Escherichia coli Proteins
  11. Sahalan AZ, Dixon RA
    Int J Antimicrob Agents, 2008 Mar;31(3):224-7.
    PMID: 18083010
    The role of membrane permeabilisation and disruption in the mechanism of action of some polymyxin analogues against Gram-negative organisms is contentious. The effects of polymyxin B (PMB) and its analogue polymyxin B nonapeptide (PMBN) on Escherichia coli envelopes should correlate, but previous work by other workers suggests that PMBN has a different mode of action. This study has reassessed the biochemical techniques used previously and has shown that, in contrast to previous studies, PMBN (a well-characterised antibacterial synergist) readily releases periplasmic proteins and lipopolysaccharide from treated E. coli at subinhibitory concentrations in normal physiological buffer conditions. We conclude that, when tested with appropriate methodology, PMBN closely correlates with the early effects of PMB on the cell envelope of E. coli and this study shows that it is now consistent with the accepted interactions of membrane-active agents against Gram-negative cells.
    Matched MeSH terms: Escherichia coli Proteins/metabolism
  12. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Escherichia coli Proteins/genetics
  13. Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr Purif, 2005 Apr;40(2):411-6.
    PMID: 15766884
    The extracellular production of T1 lipase was performed by co-expression of pJL3 vector encoding bacteriocin release protein in prokaryotic system. Secretory expression was optimized by considering several parameters, including host strains, inducer (IPTG) concentration, media, induction at A(600 nm), temperature, and time of induction. Among the host strains tested, Origami B excreted out 18,100 U/ml of lipase activity into culture medium when induced with 50 microM IPTG for 12 h. The Origami B harboring recombinant plasmid pGEX/T1S and pJL3 vector was chosen for further study. IPTG at 0.05 mM, YT medium, induction at A(600 nm) of 1.25, 30 degrees C, and 32 h of induction time were best condition for T1 lipase secretion with Origami B as a host.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  14. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Immunol Infect, 2009 Apr;42(2):129-33.
    PMID: 19597644
    In addition to beta-lactamase production, loss of porins confers resistance to extended-spectrum beta-lactams in Klebsiella pneumoniae and Escherichia coli infection. This study describes the detection of SHV-12 extended-spectrum beta-lactamase (ESBL) subtype and the loss of OmpK35 porin in 4 strains of K. pneumoniae and E. coli.
    Matched MeSH terms: Escherichia coli Proteins/genetics*
  15. Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, et al.
    mBio, 2018 08 21;9(4).
    PMID: 30131362 DOI: 10.1128/mBio.01462-18
    Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
    Matched MeSH terms: Escherichia coli Proteins/genetics*; Escherichia coli Proteins/metabolism
  16. Ngaini Z, Mortadza NA
    Nat Prod Res, 2019 Dec;33(24):3507-3514.
    PMID: 29911437 DOI: 10.1080/14786419.2018.1486310
    Chemical modification of medicines from natural product-based molecules has become of interest in recent years. In this study, a series of halogenated azo derivatives 1a-d were synthesised via coupling reaction, followed by Steglich esterification with aspirin (a natural product derivative) to form azo derivatives 2a-d. While, halogenated azo-aspirin 3a-d were synthesised via direct coupling reaction of aspirin and diazonium salt. Bacteriostatic activity was demonstrated against E. coli and S. aureus via turbidimetric kinetic method. Compound 3a-d showed excellent antibacterial activities against E. coli (MIC 75-94 ppm) and S. aureus (MIC 64-89 ppm) compared to ampicillin (MIC 93 and 124 ppm respectively), followed by 1a-d and 2a-d. The presence of reactive groups of -OH, N=N, C=O and halogens significantly contribute excellent interaction towards E. coli and S. aureus. Molecular dockings analysis of 3a against MIaC protein showed binding free energy of -7.2 kcal/mol (E. coli) and -6.6 kcal/mol (S. aureus).
    Matched MeSH terms: Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry
  17. Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK
    Biochem Biophys Res Commun, 2013 Oct 4;439(4):576-9.
    PMID: 24025676 DOI: 10.1016/j.bbrc.2013.09.016
    Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
    Matched MeSH terms: Escherichia coli Proteins/genetics*; Escherichia coli Proteins/metabolism
  18. Mienda BS, Shamsir MS, Md Illias R
    J Biomol Struct Dyn, 2016 Aug;34(8):1705-16.
    PMID: 26513379 DOI: 10.1080/07391102.2015.1090341
    Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.
    Matched MeSH terms: Escherichia coli Proteins/genetics*; Escherichia coli Proteins/metabolism*
  19. Low KO, Mahadi NM, Abdul Rahim R, Rabu A, Abu Bakar FD, Abdul Murad AM, et al.
    J Biotechnol, 2010 Dec;150(4):453-9.
    PMID: 20959127 DOI: 10.1016/j.jbiotec.2010.10.001
    The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.
    Matched MeSH terms: Escherichia coli Proteins/metabolism*
  20. Lim KT, Yasin R, Yeo CC, Puthucheary S, Thong KL
    J Biomed Biotechnol, 2009;2009:165637.
    PMID: 19672454 DOI: 10.1155/2009/165637
    The emergence of Escherichia coli that produce extended spectrum beta-lactamases (ESBLs) and are multidrug resistant (MDR) poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics). PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5'CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD), repetitive extragenic palindromes (REPs), and enterobacterial repetitive intergenic consensus (ERIC). These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.
    Matched MeSH terms: Escherichia coli Proteins/biosynthesis*; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links