Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Khawarizmi Mohd Aziz, Ding, Phebe
    MyJurnal
    The demand of fruits and vegetables across the world had increased throughout the years which urge the need to have better and proper way to increase produce safety, quality and postharvest life. Traditionally pesticides or other chemicals had been used to encounter microbes related to postharvest diseases. Over time, consumers are concern towards health effect of consuming those produce treated with chemicals. Ozone is one of the approach that provide both of the needs to deal with pathogenic microbes and also give no harmful residue throughout the process. Several reports had proven that ozone can almost kill or inhibit all pathogenic microbes on treated commodity which promote higher quality and postharvest life during storage. This review focus and summarise the use of ozone in the form of aqueous and gaseous towards fresh produces, its benefits and also the precaution during ozone application.
    Matched MeSH terms: Food Storage
  2. Syafiq R, Sapuan SM, Zuhri MYM, Ilyas RA, Nazrin A, Sherwani SFK, et al.
    Polymers (Basel), 2020 Oct 19;12(10).
    PMID: 33086533 DOI: 10.3390/polym12102403
    Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film's biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.
    Matched MeSH terms: Food Storage
  3. Khalil MI, Sulaiman SA, Alam N, Moniruzzaman M, Bai'e S, Man CN, et al.
    Molecules, 2012 Jan 11;17(1):674-87.
    PMID: 22237682 DOI: 10.3390/molecules17010674
    This study was conducted to evaluate the effects of evaporation, gamma irradiation and temperature on the total polyphenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities of Tualang honey samples (n = 14) following storage over three, six or twelve months. The mean polyphenol concentrations of the six gamma irradiated honey samples at three, six and twelve months, respectively, were 96.13%, 98.01% and 102.03% higher than the corresponding values of the eight non-gamma irradiated samples. Similarly, the mean values for flavonoids at three, six and twelve months were 111.52%, 114.81% and 110.04% higher, respectively, for the gamma irradiated samples. The mean values for DPPH radical-scavenging activities at three, six and twelve months were also 67.09%, 65.26% and 44.65% higher, respectively, for the gamma irradiated samples. These data indicate that all gamma irradiated honey samples had higher antioxidant potential following gamma irradiation, while evaporation and temperature had minor effects on antioxidant potential.
    Matched MeSH terms: Food Storage*
  4. Fazilah NF, Hamidon NH, Ariff AB, Khayat ME, Wasoh H, Halim M
    Molecules, 2019 Apr 11;24(7).
    PMID: 30978923 DOI: 10.3390/molecules24071422
    There has been an explosion of probiotic incorporated based product. However, many reports indicated that most of the probiotics have failed to survive in high quantity, which has limited their effectiveness in most functional foods. Thus, to overcome this problem, microencapsulation is considered to be a promising process. In this study, Lactococcus lactis Gh1 was encapsulated via spray-drying with gum Arabic together with Synsepalum dulcificum or commonly known as miracle fruit. It was observed that after spray-drying, high viability (~10⁸ CFU/mL) powders containing L. lactis in combination with S. dulcificum were developed, which was then formulated into yogurt. The tolerance of encapsulated bacterial cells in simulated gastric juice at pH 1.5 was tested in an in-vitro model and the result showed that after 2 h, cell viability remained high at 1.11 × 10⁶ CFU/mL. Incubation of encapsulated cells in the presence of 0.6% (w/v) bile salts showed it was able to survive (~10⁴ CFU/mL) after 2 h. Microencapsulated L. lactis retained a higher viability, at ~10⁷ CFU/mL, when incorporated into yogurt compared to non-microencapsulated cells ~10⁵ CFU/mL. The fortification of microencapsulated and non-microencapsulated L. lactis in yogurts influenced the viable cell counts of yogurt starter cultures, Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus.
    Matched MeSH terms: Food Storage
  5. Sabow AB, Sazili AQ, Zulkifli I, Goh YM, Ab Kadir MZ, Abdulla NR, et al.
    Meat Sci, 2015 Jun;104:78-84.
    PMID: 25732178 DOI: 10.1016/j.meatsci.2015.02.004
    The study assessed the effect of conscious halal slaughter and slaughter following minimal anesthesia on bleeding efficiency of goats and keeping quality of goat meat. Ten Boer cross bucks were divided into two groups and subjected to either halal slaughter without stunning (HS) or minimal anesthesia prior to slaughter (AS). The blood lost during exsanguination was measured. Residual blood was further quantified by determination of hemoglobin and myoglobin content in longissimus lumborum muscle. Storage stability of the meat was evaluated by microbiological analysis and lipid oxidation. Blood loss at exsanguination, residual hemoglobin and lipid oxidation were not significantly different (p>0.05) between HS and AS. Lactic acid bacteria was the only microbe that was significantly elevated after 24h of storage at 4°C in the AS group. In conclusion, slaughtering goats under minimal anesthesia or fully conscious did not affect bleeding efficiency and keeping quality of goat meat.
    Matched MeSH terms: Food Storage
  6. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
    Matched MeSH terms: Food Storage/methods*
  7. Azman NA, Gordon MH, Skowyra M, Segovia F, Almajano MP
    J Sci Food Agric, 2015 Jul;95(9):1804-11.
    PMID: 25139796 DOI: 10.1002/jsfa.6878
    Gentiana lutea root is a medicinal herb that contains many active compounds which contribute to physiological effects, and it has recently attracted much attention as a natural source of antioxidants. The aim of this study was to evaluate the effects on the colour, pH, microbial activities, sensory quality and resistance to lipid oxidation (through the thiobarbituric acid method) during storage of beef patties containing different concentrations of G. lutea. Fresh beef patties were formulated with 0-5 g kg(-1) of G. lutea and 0 or 0.5 g kg(-1) of ascorbic acid and packed in two different atmospheres, Modified Atmosphere 1 (MAP1) and Modified Atmosphere 2 (MAP2), and stored at 4 ± 1 °C for 10 days. MAP1 contained 20:80 (v/v) O2:CO2 and MAP2 contained 80:20 (v/v) O2:CO2.
    Matched MeSH terms: Food Storage
  8. Madani B, Mirshekari A, Yahia E
    J Sci Food Agric, 2016 Jul;96(9):2963-8.
    PMID: 26374618 DOI: 10.1002/jsfa.7462
    BACKGROUND: There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects.

    RESULTS: Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage.

    CONCLUSION: Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry.

    Matched MeSH terms: Food Storage*
  9. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Food Storage
  10. Mirshekari A, Madani B, Golding JB
    J Sci Food Agric, 2017 Aug;97(11):3706-3711.
    PMID: 28111769 DOI: 10.1002/jsfa.8231
    BACKGROUND: The marketability of fresh-cut banana slices is limited by the rapid rate of fruit softening and browning. However, there is no scientific literature available about the role of postharvest calcium propionate and chitosan treatment on the quality attributes of fresh-cut banana. Therefore, the aim of the present study was to investigate these effects.

    RESULTS: The application of calcium propionate plus chitosan (CaP+Chit) retained higher firmness, higher ascorbic acid content, higher total antioxidant activity and higher total phenolic compounds, along with lower browning, lower polyphenol oxidase, lower peroxidase, lower polygalacturonase and lower pectin methyl esterase activities and microbial growth, compared to control banana slices after 5 days of cold storage.

    CONCLUSION: The results of the present study show that CaP+Chit could be used to slow the loss of quality at the same time as maintaining quality and inhibiting microbial loads. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Food Storage
  11. Jafarzadeh S, Rhim JW, Alias AK, Ariffin F, Mahmud S
    J Sci Food Agric, 2019 Apr;99(6):2716-2725.
    PMID: 30350410 DOI: 10.1002/jsfa.9439
    BACKGROUND: Active food packaging films with improved properties and strong antimicrobial activity were prepared by blending mixed nanomaterials with different ratio [1:4 (40 mg:160 mg), 3:2 (120 mg: 80 mg), 0:5 (0 mg: 200 mg) and 5:0 (200 mg:0 mg)] of ZnO and kaolin with semolina using a solvent casting method and used for the packaging of low moisture mozzarella cheese to test the effect of packaging on the quality change of the cheese for long-term (up to 72 days) refrigerated storage.

    RESULTS: Compared with the neat semolina film, mechanical strength (TS) of the nanocomposite films increased significantly (increase in 21-65%) and water vapor barrier (WVP) and O2 gas barrier (OP) properties decreased significantly (decrease in 43-50% and 60-65%, respectively) depending on the blending ratio of ZnO and kaolin nanoclay. The nanocomposite films also exhibited strong antimicrobial activity against bacteria (E. coli and S. aureus), yeast (C. albicans), and mold (A. niger). The nanocomposite packaging films were effectively prevented the growth of microorganisms (coliforms, total microbial, and fungi) of the cheese during storage at low-temperature and showed microbial growth of less than 2.5 log CFU/g after 72 days of storage compared to the control group, and the quality of the packaged cheese was still acceptable.

    CONCLUSION: The semolina-based nanocomposite films, especially Sem/Z3 K2 film, were effective for packaging of low moisture mozzarella cheese to maintain the physicochemical properties (pH, moisture, and fat content) and quality (color, taste, texture, and overall acceptability) of the cheese as well as preventing microbial growth (coliforms, total microbial, and fungi). © 2018 Society of Chemical Industry.

    Matched MeSH terms: Food Storage
  12. Mat Yusoff M, Niranjan K, Mason OA, Gordon MH
    J Sci Food Agric, 2020 Mar 15;100(4):1588-1597.
    PMID: 31773733 DOI: 10.1002/jsfa.10167
    BACKGROUND: Moringa oleifera (MO) kernel oil is categorized as a high-oleic oil that resembles olive oil. However, unlike olive trees, MO trees are largely present in most subtropical and tropical countries. In these countries, therefore, the benefits of oleic acid can be obtained at a cheaper price through the consumption of MO kernel oil. This study reports on the effect of different extraction methods on oxidative properties of MO kernel oil during storage for 140 days at 13, 25, and 37 °C.

    RESULTS: All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods.

    CONCLUSION: These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Food Storage
  13. Jaswir I, Shahidan N, Othman R, Has-Yun Hashim YZ, Octavianti F, bin Salleh MN
    J Oleo Sci, 2014;63(8):761-7.
    PMID: 25007748
    Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and β-carotene with a slight decrease in zeaxanthin. The amounts of β-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of β-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and β-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.
    Matched MeSH terms: Food Storage*
  14. Ping BTY, Idris CAC, Maurad ZA
    J Oleo Sci, 2020 Oct 07;69(10):1209-1218.
    PMID: 32908090 DOI: 10.5650/jos.ess20045
    Refined red palm olein (RPOo) is the first cooking oil that is a pro-Vitamin A source due to its high carotenoid concentration. The quality specifications from the manufacturers are usually applied to freshly produced oil. However, there is currently no information regarding the oxidative stability and phytonutrient content (Vitamin E and Carotene) for RPOo after prolonged storage time. The objective then is to study the effect of two local storage conditions and storage period(s) on the oxidative stability of RPOo. In this study, peroxide value (PV), p-anisidine value (AnV), induction period (IP), free fatty acid (FFA), and Vitamin E content were determined periodically for twelve months under local storage conditions (supermarket and kitchen). Carotene content, however, was determined only at initial and at the 12th month of storage time periods. It was found that there was an overall progressive but slow increase in PV and p-AnV. For PV, the storage effects were inconsistent. However, the effects were significant (p < 0.01) on the AnV throughout storage. At the end of the 12-months, for both storage conditions, the PV < 10 meq O2 g-1, the AnV < 10, the FFA < 0.2 % (palmitic acid), with a 30% drop in the total Vitamin E, and carotenoids content showed no significant drop (p < 0.01). The PV and AnV were also within Codex Alimentarius' recommended limits. Finally, the oxidative parameters showed that RPOo remains stable after year storage under the two simulated local storage conditions (the aforementioned supermarket and kitchen).
    Matched MeSH terms: Food Storage*
  15. Loganathan R, Tarmizi AHA, Vethakkan SR, Teng KT
    J Oleo Sci, 2020 Oct 07;69(10):1163-1179.
    PMID: 32908089 DOI: 10.5650/jos.ess20036
    Sixty-four bottles of red palm olein and palm olein (constituted as control) samples were stored at permutations of common home setting variables which are: temperature (room temperature (24°C) or 8°C), light (kept in dark or exposure under light) and oxygen (opened or sealed caps). The effects of temperature, oxygen and light on the stability of red palm olein and palm olein were studied over 4 months of storage at simulated domestic conditions. The degree of auto- and photo-oxidations was evaluated by monitoring the following quality parameters: acidity, peroxide and p-anisidine values, fatty acids composition, carotenes and vitamin E. It is noted from the study that opened bottles of red palm olein was found to be stable for 4 months in comparison to its counterpart (palm olein) evidenced from their primary oxidative constituents (peroxides) and hydrolytic behavior (free fatty acids). Opened bottles are better off when stored at 8°C and protected from light for a longer shelf-life. Sealed bottles of palm olein showed better storage stability in the dark at 8°C; whereas sealed bottles of red palm olein was found to be stable at both temperatures studied without the influence of light. After 4 months of varying storage conditions, the fatty acid composition, vitamin E and carotenes of both oils remained unchanged. The phytonutrients in red palm olein rendered better storage stability when compared to palm olein.
    Matched MeSH terms: Food Storage*
  16. Alias N, Saipol HF, Ghani AC
    J Food Sci Technol, 2014 Dec;51(12):3647-57.
    PMID: 25477631 DOI: 10.1007/s13197-012-0913-7
    A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.
    Matched MeSH terms: Food Storage
  17. Zare D, Muhammad K, Bejo MH, Ghazali HM
    J Food Sci, 2015 Feb;80(2):T479-83.
    PMID: 25586500 DOI: 10.1111/1750-3841.12752
    Scombroid fish poisoning is usually associated with consumption of fish containing high levels of histamine. However, reports indicate that some cases have responded to antihistamine therapy while ingested histamine levels in these cases were low. Potentiation of histamine toxicity by some biogenic amines, and release of endogenous histamine by other compounds such as cis-urocanic acid (UCA) are some hypotheses that have been put forth to explain this anomaly. Very little is known about the effects of storage conditions on the production of both UCA isomers and biogenic amines in tuna. Thus, the production of trans- and cis-UCA, histamine, putrescine, and cadaverine in tuna during 15 d of storage at 0, 3, and 10 °C and 2 d storage at ambient temperature were monitored. The initial trans- and cis-UCA contents in fresh tuna were 2.90 and 1.47 mg/kg, respectively, whereas the levels of putrescine and cadaverine were less than 2 mg/kg, and histamine was not detected. The highest levels of trans- and cis-UCA were obtained during 15 d storage at 3 °C (23.74 and 21.79 mg/kg, respectively) while the highest concentrations of histamine (2796 mg/kg), putrescine (220.32 mg/kg) and cadaverine (1045.20 mg/kg) were obtained during storage at room temperature, 10 and 10 °C, respectively. Histamine content increased considerably during storage at 10 °C whereas trans- and cis-UCA contents changed slightly. The initial trans-UCA content decreased during storage at ambient temperature. Thus, unlike histamine, concentrations of trans- and cis-UCA did not result in elevated levels during storage of tuna.
    Matched MeSH terms: Food Storage/methods*
  18. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
    Matched MeSH terms: Food Storage
  19. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Food Storage/methods*
  20. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Oct;83(10):2457-2465.
    PMID: 30178877 DOI: 10.1111/1750-3841.14332
    Kenaf seed oil-in-water nanoemulsions (NANO) stabilized by sodium caseinate (SC), beta-cyclodextrin (β-CD), and Tween 20 (T20) have been optimized and shown to improve in vitro bioaccessibility and physicochemical stability in the previous study. The main objective of this study was to evaluate the stability of bioactive compounds and antioxidants in the NANO during storage at different temperatures (4 °C, 25 °C, and 40 °C). An evaluation of the antioxidant activities of each emulsifier showed that SC had good scavenging capability with 97.6% ABTS radical scavenging activity. Therefore, SC which was used as one of the main emulsifiers could further enhanced the antioxidant activity of NANO. At week 8 of storage, NANO that stored at 4 °C had maintained the best bioactive compounds stability and antioxidant activities with 90% retention of vitamin E and 65% retention of phytosterols. These results suggested that 4 °C would be the most suitable storage temperature for NANO containing naturally present vitamin E and phytosterols. From the accelerated storage results at 40 °C, NANO containing vitamin E and phytosterols had maintained half of its initial concentration until week 4 and week 2 of storage, which is equivalent to 16 weeks and 8 weeks of storage at room temperature, respectively.

    PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.

    Matched MeSH terms: Food Storage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links