Displaying all 8 publications

Abstract:
Sort:
  1. Kameel NI, Wong YH, Shuib AS, Tayyab S
    Plant Physiol Biochem, 2016 Jan;98:57-63.
    PMID: 26642433 DOI: 10.1016/j.plaphy.2015.11.007
    Conformational analysis of champedak galactose-binding (CGB) lectin under different urea concentrations was studied in phosphate-buffered saline (pH 7.2) using far-ultraviolet circular dichroism (far-UV CD), tryptophan (Trp) fluorescence and ANS fluorescence. In all cases, CGB lectin displayed a two-step, three-state transition. The first transition (from the native state to the intermediate state) started at ∼2.0 M urea and ended at ∼4.5 M urea, while the second transition (from the intermediate state to the completely denatured state) was characterized by the start- and end-points at ∼5.75 M and ∼7.5 M urea, respectively, when analyzed by the emission maximum of Trp fluorescence. A marked increase in the Trp fluorescence, ANS fluorescence and -CD values at 218 nm (-CD218 nm) represented the first transition, whereas a decrease in these parameters defined the second transition. On the other hand, emission maximum of the Trp fluorescence showed a continuous increase throughout the urea concentration range. Transformation of tetramer into monomer represented the first transition, whereas the second transition reflected the unfolding of monomer. Far-UV CD, Trp fluorescence and ANS fluorescence spectra were used to characterize the native, the intermediate and the completely denatured states of CGB lectin, obtained at 0.0 M, 5.0 M and 9.0 M urea, respectively. The intermediate state was characterized by the presence of higher secondary structures, increased ANS binding as well as increased Trp fluorescence intensity. A gradual decrease in the hemagglutination activity of CGB lectin was observed with increasing urea concentrations, showing complete loss at 4.0 M urea.
    Matched MeSH terms: Galectins/drug effects; Galectins/chemistry*
  2. Kameel NI, Shuib AS, Tayyab S
    Protein Pept Lett, 2016;23(12):1111-1117.
    PMID: 27774894
    Acid denaturation of champedak galactose-binding (CGB) lectin was studied in the pH range, 7.0-1.0 using intrinsic fluorescence and ANS fluorescence measurements. The lectin remained stable up to pH 5.0 and showed local disordering in the vicinity of the protein fluorophores within the pH range, 5.0-3.5. Decrease in the pH from pH 3.5 to pH 2.5 led to structural transition, marked by the decrease in the intrinsic fluorescence and increase in the ANS fluorescence signals. This can be ascribed to the dissociation of the tetrameric lectin into monomeric forms. Further decrease in the pH up to pH 1.5 produced another transition, which specified the unfolding of monomers as reflected from the decrease in both intrinsic fluorescence and ANS fluorescence signals. Characterization of the conformational states obtained at pH 7.0, pH 2.5 and pH 1.5 based on intrinsic and ANS fluorescence spectra, gel chromatographic behavior and thermal denaturation confirmed the existence of folded monomeric forms at pH 2.5 and unfolded states at pH 1.5. However, the aciddenatured state of CGB lectin at pH 1.5 retained significant residual structure, as evident from the greater loss of both secondary and tertiary structures in the presence of 6 M guanidine hydrochloride at low pH values. Anion-induced refolding below pH 1.5 was also seen using ANS fluorescence measurements.
    Matched MeSH terms: Galectins/chemistry*
  3. Kameel NIA, Shuib AS, Tayyab S
    Protein Pept Lett, 2018;25(3):314-324.
    PMID: 29384048 DOI: 10.2174/0929866525666180130155007
    BACKGROUND: Champedak galactose-binding (CGB) lectin is a tetrameric protein with noncovalently bound monomers, isolated from Artocarpus integer fruit seeds. We had previously reported existence of a structured monomer and an unfolded monomer of CGB lectin at pH 2.5 and pH 1.5, respectively. Polyols are known to induce significant refolding in denatured proteins and stabilize proteins against environmental stresses. Studies on the effect of various polyols on the acid-denatured states of CGB lectin are lacking.

    OBJECTIVE: The objective of this study was to investigate the effects of four different polyols, namely, ethylene glycol, erythritol, xylitol and sorbitol on the acid-denatured states of CGB lectin.

    METHODS: CGB lectin was subjected to acid denaturation at pH 2.5 and pH 1.5, both in the absence and presence of 30% (w/v) polyols, i.e. ethylene glycol, erythritol, xylitol and sorbitol. Thermal denaturation of the acid-denatured states was also studied in the absence and presence of these polyols. Different spectroscopic probes such as tryptophan fluorescence, ANS fluorescence and far-UV CD spectral signal were used to monitor structural changes in the acid-denatured states of CGB lectin in the presence of polyols.

    RESULTS: Presence of erythritol, xylitol and sorbitol in the incubation mixture was found to stabilize the lectin at both pH 2.5 and pH 1.5, as evident from the burial of the hydrophobic clusters and decreased polarity around Trp residues. These polyols also stabilized the acid-denatured states of CGB lectin against thermal denaturation by shifting the thermal transition curves towards higher temperatures. Exposure of the acid-denatured states of CGB lectin, obtained at pH 2.5 and pH 1.5 to 61°C and 51°C, respectively, induced formation of non-native β-structures, compared to that present at 25°C, and this phenomenon was significantly suppressed in the presence of these polyols. Based on the spectral data, both sorbitol and erythritol appeared to exude better stabilizing effect. On the other hand, ethylene glycol was shown to destabilize the aciddenatured states of CGB lectin.

    CONCLUSION: Thermal stabilization of the lectin was noticed in the presence of erythritol, xylitol and sorbitol at both pH 2.5 and pH 1.5. These polyols also stabilize the secondary and tertiary structures of the acid-denatured CGB lectin at 25°C. Ethylene glycol was proved to be a destabilizer of the acid-denatured CGB lectin.

    Matched MeSH terms: Galectins/chemistry*
  4. Maki MAA, Cheah SC, Bayazeid O, Kumar PV
    Sci Rep, 2020 10 15;10(1):17468.
    PMID: 33060727 DOI: 10.1038/s41598-020-74467-1
    Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.
    Matched MeSH terms: Galectins/blood*
  5. Than TH, Swethadri GK, Wong J, Ahmad T, Jamil D, Maganlal RK, et al.
    Singapore Med J, 2008 Apr;49(4):333-8.
    PMID: 18418527
    It has been suggested that Galectin-3 (Gal-3) and Galectin-7 (Gal-7) are potential tumour markers for differentiating thyroid carcinoma from its benign counter part. Galectins are beta-galactoside-binding proteins with Gal-3 being a redundant pre-mRNA splicing factor. They are supposed to be p53-related regulators in cell growth and apoptosis, being either anti-apoptotic or pro-apoptotic. Although the value of Gal-3 has been studied extensively, there is little knowledge regarding the expression of Gal-7 in thyroid malignancy.
    Matched MeSH terms: Galectins/metabolism*
  6. Chan SW, Kallarakkal TG, Abraham MT
    Asian Pac J Cancer Prev, 2014;15(5):2145-52.
    PMID: 24716948
    BACKGROUND: The survival rate for oral squamous cell carcinoma (OSCC) has remained generally unchanged in the past three decades, underlining the need for more biomarkers to be developed to aid prognostication and effective management. The prognostic potential of E-cadherin expression in OSCCs has been variable in previous studies while galectin-9 expression has been correlated with improved prognosis in other cancers. The aim of the present study was to investigate the expression of galectin-9 and E-cadherin in OSCC and their potential as prognostic biomarkers.

    MATERIALS AND METHODS: E-cadherin and Galectin-9 expression was examined by immunohistochemistry in 32 cases of OSCC of the buccal mucosa (13 with and 19 without lymph node metastasis), as well as 6 samples of reactive lesions and 5 of normal buccal mucosa.

    RESULTS: The expression of E-cadherin in OSCC was significantly lower than the control tissues but galectin-9 expression was conversely higher. Median E-cadherin HSCOREs between OSCCs positive and negative for nodal metastasis were not significantly different. Mean HSCOREs for galectin-9 in OSCC without lymph node metastasis (127.7 ± 81.8) was higher than OSCC with lymph node metastasis (97.9 ± 62.9) but this difference was not statistically significant.

    CONCLUSIONS: E-cadherin expression is reduced whilst galectin-9 expression is increased in OSCC. However, the present results suggest that E-cadherin and galectin-9 expression may not be useful as prognostic markers for OSCC.

    Matched MeSH terms: Galectins/genetics*
  7. Mohamed E, Abdul-Rahman PS, Doustjalali SR, Chen Y, Lim BK, Omar SZ, et al.
    Electrophoresis, 2008 Jun;29(12):2645-50.
    PMID: 18494030 DOI: 10.1002/elps.200700828
    A 35 kDa glycoprotein whose abundance was previously demonstrated to be enhanced in sera of patients with endometrial adenocarcinoma (n = 12), was isolated from pooled sera of three of the cancer patients using champedak galactose-binding lectin affinity chromatography in the present study. Subjecting it to 2-DE and MS/MS, the glycoprotein was identified as the O-glycosylated fragment of inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4). When compared to control sera (n = 17), expression of the 35 kDa ITIH4 cleavage fragment was demonstrated to be significantly enhanced in sera of patients with breast carcinoma (n = 10), epithelial ovarian carcinoma (n = 10), and germ cell ovarian carcinoma (n = 10) but not in patients with nasopharyngeal carcinoma (n = 13) and osteosarcoma (n = 7). The lectin-based electrophoretic bioanalytical method adopted in the present study may be used to assess the physiological relevance of ITIH4 fragmentation and its correlation with different malignancies, their stages and progression.
    Matched MeSH terms: Galectins*
  8. Abdul Rahman M, Anuar Karsani S, Othman I, Shafinaz Abdul Rahman P, Haji Hashim O
    Biochem Biophys Res Commun, 2002 Jul 26;295(4):1007-13.
    PMID: 12127996
    Our group has previously reported the isolation, partial characterisation, and application of a Galbeta1-3GalNAc- and IgA1-reactive lectin from the seeds of champedak (Artocarpus integer). In the present study, we have subjected the purified lectin to reverse-phase high performance liquid chromatography and sequenced its subunits. Determination of the N-terminal sequence of the first 47 residues of the large subunit demonstrated at least 95% homology to the N-terminal sequence of the alpha chains of a few other galactose-binding Artocarpus lectins. The two smaller subunits of the lectin, each comprised of 21 amino acid residues, demonstrated minor sequence variability. Their sequences were generally comparable to the beta chains of the other galactose-binding Artocarpus lectins. When used to probe human serum glycopeptides that were separated by two-dimensional gel electrophoresis, the lectin demonstrated strong apparent interactions with glycopeptides of IgA1, hemopexin, alpha2-HS glycoprotein, alpha1-antichymotrypsin, and a few unknown glycoproteins. Immobilisation of the lectin to Sepharose generated an affinity column that may be used to isolate the O-glycosylated serum glycoproteins.
    Matched MeSH terms: Galectins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links