Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H
    Viruses, 2020 07 26;12(8).
    PMID: 32722532 DOI: 10.3390/v12080803
    Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus-host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
    Matched MeSH terms: Genomics/methods*
  2. Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, et al.
    Viruses, 2019 05 23;11(5).
    PMID: 31126128 DOI: 10.3390/v11050471
    In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
    Matched MeSH terms: Genomics/methods
  3. Lubanga N, Massawe F, Mayes S, Gorjanc G, Bančič J
    Plant Genome, 2023 Mar;16(1):e20282.
    PMID: 36349831 DOI: 10.1002/tpg2.20282
    Tea [Camellia sinensis (L.) O. Kuntze] is mainly grown in low- to middle-income countries (LMIC) and is a global commodity. Breeding programs in these countries face the challenge of increasing genetic gain because the accuracy of selecting superior genotypes is low and resources are limited. Phenotypic selection (PS) is traditionally the primary method of developing improved tea varieties and can take over 16 yr. Genomic selection (GS) can be used to improve the efficiency of tea breeding by increasing selection accuracy and shortening the generation interval and breeding cycle. Our main objective was to investigate the potential of implementing GS in tea-breeding programs to speed up genetic progress despite the low cost of PS in LMIC. We used stochastic simulations to compare three GS-breeding programs with a Pedigree and PS program. The PS program mimicked a practical commercial tea-breeding program over a 40-yr breeding period. All the GS programs achieved at least 1.65 times higher genetic gains than the PS program and 1.4 times compared with Seed-Ped program. Seed-GSc was the most cost-effective strategy of implementing GS in tea-breeding programs. It introduces GS at the seedlings stage to increase selection accuracy early in the program and reduced the generation interval to 2 yr. The Seed-Ped program outperformed PS by 1.2 times and could be implemented where it is not possible to use GS. Our results indicate that GS could be used to improve genetic gain per unit time and cost even in cost-constrained tea-breeding programs.
    Matched MeSH terms: Genomics/methods
  4. Graham NS, Hammond JP, Lysenko A, Mayes S, O Lochlainn S, Blasco B, et al.
    Plant Cell, 2014 Jul;26(7):2818-30.
    PMID: 25082855 DOI: 10.1105/tpc.114.128603
    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
    Matched MeSH terms: Genomics/methods*
  5. Saunus JM, Quinn MC, Patch AM, Pearson JV, Bailey PJ, Nones K, et al.
    J Pathol, 2015 Nov;237(3):363-78.
    PMID: 26172396 DOI: 10.1002/path.4583
    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.
    Matched MeSH terms: Genomics/methods*
  6. Choo SW, Ang MY, Dutta A, Tan SY, Siow CC, Heydari H, et al.
    Sci Rep, 2015 Dec 15;5:18227.
    PMID: 26666970 DOI: 10.1038/srep18227
    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.
    Matched MeSH terms: Genomics/methods*
  7. Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, et al.
    Sci Rep, 2016 06 24;6:28594.
    PMID: 27339202 DOI: 10.1038/srep28594
    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.
    Matched MeSH terms: Genomics/methods
  8. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
    Matched MeSH terms: Genomics/methods
  9. Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA
    Sci Rep, 2021 10 04;11(1):19678.
    PMID: 34608238 DOI: 10.1038/s41598-021-99206-y
    Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon-intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
    Matched MeSH terms: Genomics/methods*
  10. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al.
    Science, 2022 Aug 26;377(6609):960-966.
    PMID: 35881005 DOI: 10.1126/science.abp8337
    Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
    Matched MeSH terms: Genomics/methods
  11. Briggs MT, Condina MR, Ho YY, Everest-Dass AV, Mittal P, Kaur G, et al.
    Proteomics, 2019 11;19(21-22):e1800482.
    PMID: 31364262 DOI: 10.1002/pmic.201800482
    Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.
    Matched MeSH terms: Genomics/methods
  12. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Genomics/methods*
  13. Heydari H, Siow CC, Tan MF, Jakubovics NS, Wee WY, Mutha NV, et al.
    PLoS One, 2014;9(1):e86318.
    PMID: 24466021 DOI: 10.1371/journal.pone.0086318
    Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/.
    Matched MeSH terms: Genomics/methods*
  14. Mohd-Shamsudin MI, Kang Y, Lili Z, Tan TT, Kwong QB, Liu H, et al.
    PLoS One, 2013;8(5):e60839.
    PMID: 23734171 DOI: 10.1371/journal.pone.0060839
    Gene discovery in the Malaysian giant freshwater prawn (Macrobrachium rosenbergii) has been limited to small scale data collection, despite great interest in various research fields related to the commercial significance of this species. Next generation sequencing technologies that have been developed recently and enabled whole transcriptome sequencing (RNA-seq), have allowed generation of large scale functional genomics data sets in a shorter time than was previously possible. Using this technology, transcriptome sequencing of three tissue types: hepatopancreas, gill and muscle, has been undertaken to generate functional genomics data for M. rosenbergii at a massive scale. De novo assembly of 75-bp paired end Ilumina reads has generated 102,230 unigenes. Sequence homology search and in silico prediction have identified known and novel protein coding candidate genes (∼24%), non-coding RNA, and repetitive elements in the transcriptome. Potential markers consisting of simple sequence repeats associated with known protein coding genes have been successfully identified. Using KEGG pathway enrichment, differentially expressed genes in different tissues were systematically represented. The functions of gill and hepatopancreas in the context of neuroactive regulation, metabolism, reproduction, environmental stress and disease responses are described and support relevant experimental studies conducted previously in M. rosenbergii and other crustaceans. This large scale gene discovery represents the most extensive transcriptome data for freshwater prawn. Comparison with model organisms has paved the path to address the possible conserved biological entities shared between vertebrates and crustaceans. The functional genomics resources generated from this study provide the basis for constructing hypotheses for future molecular research in the freshwater shrimp.
    Matched MeSH terms: Genomics/methods*
  15. Masomian M, Rahman RN, Salleh AB, Basri M
    PLoS One, 2016;11(3):e0149851.
    PMID: 26934700 DOI: 10.1371/journal.pone.0149851
    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
    Matched MeSH terms: Genomics/methods
  16. Rahman F, Hassan M, Rosli R, Almousally I, Hanano A, Murphy DJ
    PLoS One, 2018;13(5):e0196669.
    PMID: 29771926 DOI: 10.1371/journal.pone.0196669
    Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these genes are present in the vast majority of Viridiplantae taxa for which sequence data are available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green algae but are absent from the small number of sequenced Prasinophyceaen genomes. CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sister clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in all of the >300 sequenced Embryophyte genomes, where some species contain as many as 10-12 genes that have arisen via selective gene duplication. Angiosperm genomes harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L (low), where H-forms contain an additional C-terminal motif of about 30-50 residues that is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally both) of these isoforms per genome. Transcriptome and biochemical data show that CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer membranes. Many of the analysed isoforms also have peroxygenase activity and are involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viridiplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had already diverged from other Archaeplastidal groups such as the Rhodophyta and Glaucophyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the Embryophyte proteins have a much wider spectrum of roles and may have been instrumental in the colonisation of terrestrial habitats and the subsequent diversification as the major land flora.
    Matched MeSH terms: Genomics/methods
  17. Wong EH, Ng CG, Chua EG, Tay AC, Peters F, Marshall BJ, et al.
    PLoS One, 2016;11(11):e0166835.
    PMID: 27870886 DOI: 10.1371/journal.pone.0166835
    BACKGROUND: Biofilm formation by Helicobacter pylori may be one of the factors influencing eradication outcome. However, genetic differences between good and poor biofilm forming strains have not been studied.

    MATERIALS AND METHODS: Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR.

    RESULTS: Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation.

    CONCLUSIONS: Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation.

    Matched MeSH terms: Genomics/methods*
  18. Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JWF, Sukri RS, et al.
    PLoS One, 2020;15(5):e0232936.
    PMID: 32442164 DOI: 10.1371/journal.pone.0232936
    Natural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks. This, in turn, delays the application of downstream conservation action. A sizable component of botanical collections are sterile-thus eluding identification and are slowing down progress in systematic treatments of tropical biodiversity. With rapid advances in genomics and bioinformatic approaches to biodiversity research, museomics is emerging as a new field breathing life into natural collections that have been built up over centuries. Using MIGseq (multiplexed ISSR genotyping by sequencing), we generated 10,000s of short loci, for both freshly collected materials and museum specimens (aged >100 years) of Lithocarpus-a widespread tropical tree genus endemic to the Asian tropics. Loci recovery from historical and recently collected samples was not affected by sample age and preservation history of the study material, underscoring the reliability and flexibility of the MIGseq approach. Phylogenomic inference and biogeographic reconstruction across insular Asia, highlights repeated migration and diversification patterns between continental regions and islands. Results indicate that co-occurring insular species at the extremity of the distribution range are not monophyletic, raising the possibility of multiple independent dispersals along the outer edge of Wallacea. This suggests that dispersal of large seeded tree genera throughout Malesia and across Wallacea may have been less affected by large geographic distances and the presence of marine barriers than generally assumed. We demonstrate the utility of MIGseq in museomic studies using non-model taxa, presenting the first range-wide genomic assessment of Lithocarpus and tropical Fagaceae as a proof-of-concept. Our study shows the potential for developing innovative genomic approaches to improve the capture of novel evolutionary signals using valuable natural history collections of hyperdiverse taxa.
    Matched MeSH terms: Genomics/methods*
  19. Bhalla R, Narasimhan K, Swarup S
    Plant Cell Rep, 2005 Dec;24(10):562-71.
    PMID: 16220342
    A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics.
    Matched MeSH terms: Genomics/methods
  20. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
    Matched MeSH terms: Genomics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links