Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, et al.
    Front Pharmacol, 2020;11:586725.
    PMID: 33708111 DOI: 10.3389/fphar.2020.586725
    Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
    Matched MeSH terms: Glucuronidase
  2. Masura SS, Parveez GK, Ismail I
    N Biotechnol, 2010 Sep 30;27(4):289-99.
    PMID: 20123048 DOI: 10.1016/j.nbt.2010.01.337
    The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.
    Matched MeSH terms: Glucuronidase/metabolism
  3. Kamaladini H, Nor Akmar Abdullah S, Aziz MA, Ismail IB, Haddadi F
    J Plant Physiol, 2013 Feb 15;170(3):346-54.
    PMID: 23290536 DOI: 10.1016/j.jplph.2012.10.017
    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.
    Matched MeSH terms: Glucuronidase/metabolism
  4. Shokryazdan P, Faseleh Jahromi M, Liang JB, Ramasamy K, Sieo CC, Ho YW
    PLoS One, 2017;12(5):e0175959.
    PMID: 28459856 DOI: 10.1371/journal.pone.0175959
    The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3) from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.
    Matched MeSH terms: Glucuronidase/metabolism
  5. Inayat-Hussain SH, Lubis SH, Sakian NI, Ghazali AR, Ali NS, El Sersi M, et al.
    Toxicol Appl Pharmacol, 2007 Mar;219(2-3):210-6.
    PMID: 17140616
    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma beta-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The beta-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasma cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma beta-glucuronidase activity was measured fluorometrically based on beta-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p<0.05) among the patients (1386.786+/-791.291 U/L/min) but the inhibition in plasma cholinesterase activity among the farmers (7346.5+/-1860.786 U/L/min) was not significant (p>0.05). The plasma beta-glucuronidase activity among the farmers was significantly elevated (p<0.05) (0.737+/-0.425 microM/h) but not significant among the patients (p>0.05). The plasma cholinesterase activity was positively correlated with the plasma beta-glucuronidase activity among the farmers (r=0.205, p<0.01) but not among the patients (r=0.79, p>0.05). Thus, plasma beta-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma beta-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning.
    Matched MeSH terms: Glucuronidase/blood*
  6. Wiesmann UN, DiDonato S, Herschkowitz NN
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1338-43.
    PMID: 4
    Matched MeSH terms: Glucuronidase/metabolism*
  7. Chan MY, Tay ST
    Mycoses, 2010 Jan;53(1):26-31.
    PMID: 19389064 DOI: 10.1111/j.1439-0507.2008.01654.x
    This study compared the enzymatic activity of clinical isolates of Cryptococcus neoformans, Cryptococcus gattii, environmental isolates of C. neoformans and non-neoformans Cryptococcus. Most of the cryptococcal isolates investigated in this study exhibited proteinase and phospholipase activities. Laccase activity was detected from all the C. neoformans and C. gattii isolates, but not from the non-neoformans Cryptococcus isolates. There was no significant difference in the proteinase, phospholipase and laccase activities of C. neoformans and C. gattii. However, significant difference in the enzymatic activities of beta-glucuronidase, alpha-glucosidase, beta-glucosidase and N-acetyl-beta-glucosaminidase between C. neoformans and C. gattii isolates was observed in this study. Environmental isolates of C. neoformans exhibited similar enzymatic profiles as the clinical isolates of C. neoformans, except for lower proteinase and laccase activities.
    Matched MeSH terms: Glucuronidase/analysis
  8. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: Glucuronidase
  9. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Glucuronidase
  10. Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, et al.
    Bioorg Med Chem, 2015 Dec 1;23(23):7394-404.
    PMID: 26526743 DOI: 10.1016/j.bmc.2015.10.037
    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
    Matched MeSH terms: Glucuronidase
  11. Yusuf CYL, Abdullah JO, Shaharuddin NA, Abu Seman I, Abdullah MP
    Plant Cell Rep, 2018 Feb;37(2):265-278.
    PMID: 29090330 DOI: 10.1007/s00299-017-2228-7
    KEY MESSAGE: The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.
    Matched MeSH terms: Glucuronidase/genetics; Glucuronidase/metabolism
  12. Saed Taha R, Ismail I, Zainal Z, Abdullah SN
    J Plant Physiol, 2012 Sep 01;169(13):1290-300.
    PMID: 22658816 DOI: 10.1016/j.jplph.2012.05.001
    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.
    Matched MeSH terms: Glucuronidase/genetics*; Glucuronidase/chemistry
  13. Lee JJ, Ahmad S, Roslan HA
    Pak J Biol Sci, 2013 Dec 15;16(24):1913-21.
    PMID: 24517006
    Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.
    Matched MeSH terms: Glucuronidase/biosynthesis; Glucuronidase/genetics
  14. Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3624-35.
    PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002
    Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors
  15. Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, et al.
    Bioorg Med Chem, 2014 Jul 1;22(13):3449-54.
    PMID: 24844756 DOI: 10.1016/j.bmc.2014.04.039
    2-Arylquinazolin-4(3H)-ones 1-25 were synthesized by reacting anthranilamide with various benzaldehydes using CuCl2·2H2O as a catalyst in ethanol under reflux. Synthetic 2-arylquinazolin-4(3H)-ones 1-25 were evaluated for their β-glucuronidase inhibitory potential. A trend of inhibition IC50 against the enzyme in the range of 0.6-198.2μM, was observed and compared with the standard d-saccharic acid 1,4-lactone (IC50=45.75±2.16μM). Compounds 13, 19, 4, 12, 14, 22, 23, 25, 15, 8, 17, 11, 21, 1, 3, 18, 9, 2, and 24 with the IC50 values within the range of 0.6-44.0μM, indicated that the compounds have superior activity than the standard. The compounds showed no cytotoxic effects against PC-3 cells. A structure-activity relationship is established.
    Matched MeSH terms: Glucuronidase/metabolism*
  16. Kamaladini H, Abdullah SN, Aziz MA
    J Biosci Bioeng, 2011 Feb;111(2):217-25.
    PMID: 21044862 DOI: 10.1016/j.jbiosc.2010.09.010
    Reporter gene activity under the regulation of the oil palm metallothionein-like gene, MT3-A promoter was assessed in prokaryotes. Vector constructs containing MT3-A promoter with (W1MT3-A) and without (W2MT3-A) five prime untranslated region (5'-UTR) fused to ß-glucuronidase (GUS) gene in pCAMBIA 1304 vector were produced. 5'-rapid amplification of cDNA ends (RACE) using mRNA isolated from Escherichia coli and Agrobacterium tumefaciens harboring W1MT3-A confirmed that fusion transcripts of MT3-A 5'-UTR-GUS were successfully produced in both bacteria. Competitive PCR and GUS fluorometric assay showed changes in the level of GUS gene transcripts and enzyme activity in response to increasing concentrations of Cu²+ and Zn²+. The application of Cu²+ increased GUS activity and GUS mRNA level in both bacteria. In E. coli, a high level of GUS activity driven by W1MT3-A and W2MT3-A was observed in treatment with 25 μM Cu²+ resulting in an increase in the GUS mRNA level to 7.2 and 7.5 x 10⁻⁴ pmol/μl respectively, compared to the control (5.1 x 10⁻⁴ pmol/μl). The lowest GUS activity and GUS mRNA level were obtained for W1MT3-A and W2MT3-A in the presence of 100 μM Cu²+ in both bacteria compared to the control (without Cu²+). The application of different Zn²+ concentrations resulted in a strong decrease in the GUS activity and GUS mRNA level in E. coli and A. tumefaciens. These findings showed that the oil palm MT3-A promoter is functional in prokaryotes and produced detectable GUS transcripts and enzyme activities. This promoter may potentially be used in prokaryotic systems which require metal inducible gene expression.
    Matched MeSH terms: Glucuronidase/genetics
  17. Kadir Ahmad Parveez G
    Methods Mol Biol, 2008;477:301-20.
    PMID: 19082956 DOI: 10.1007/978-1-60327-517-0_23
    Physical and biological parameters affecting DNA delivery into oil palm embryogenic calli using the biolistic device are optimized. Five different promoters are also evaluated to identify the most suitable promoter for use in oil palm transformation. Finally, the effectiveness of kanamycin, geneticin (G418), neomycin, hygromycin, and herbicide Basta as selection agents to inhibit growth of oil palm embryogenic calli is evaluated. Combination of optimized parameters, best promoter and selection agent is later used to transform oil palm embryogenic calli for producing transgenic oil palm plants. Bombarded embryogenic calli are exposed to 50 mg/l of Basta after 3 weeks. Basta-resistant embryogenic calli started to emerge five to six months in medium containing Basta. The Basta-resistant embryogenic calli are proliferated until they reach a specific size, and the Basta-resistant calli are later individually isolated and regenerated to produce complete plantlets. The complete regenerated plantlets are evaluated for the presence of transgenes by PCR, Southern and thin layer chromatography analyses.
    Matched MeSH terms: Glucuronidase/genetics
  18. Montaño AM, Lock-Hock N, Steiner RD, Graham BH, Szlago M, Greenstein R, et al.
    J Med Genet, 2016 06;53(6):403-18.
    PMID: 26908836 DOI: 10.1136/jmedgenet-2015-103322
    BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare disease characterised by the deficiency of β-glucuronidase (GUS). Patients' phenotypes vary from severe forms with hydrops fetalis, skeletal dysplasia and mental retardation to milder forms with fewer manifestations and mild skeletal abnormalities. Accurate assessments on the frequency and clinical characteristics of the disease have been scarce. The aim of this study was to collect such data.

    METHODS: We have conducted a survey of physicians to document the medical history of patients with MPS VII. The survey included anonymous information on patient demographics, family history, mode of diagnosis, age of onset, signs and symptoms, severity, management, clinical features and natural progression of the disease.

    RESULTS: We collected information on 56 patients from 11 countries. Patients with MPS VII were classified based on their phenotype into three different groups: (1) neonatal non-immune hydrops fetalis (NIHF) (n=10), (2) Infantile or adolescent form with history of hydrops fetalis (n=13) and (3) Infantile or adolescent form without known hydrops fetalis (n=33). Thirteen patients with MPS VII who had the infantile form with history of hydrops fetalis and survived childhood, had a wide range of clinical manifestations from mild to severe. Five patients underwent bone marrow transplantation and one patient underwent enzyme replacement therapy with recombinant human GUS.

    CONCLUSIONS: MPS VII is a pan-ethnic inherited lysosomal storage disease with considerable phenotypical heterogeneity. Most patients have short stature, skeletal dysplasia, hepatosplenomegaly, hernias, cardiac involvement, pulmonary insufficiency and cognitive impairment. In these respects it resembles MPS I and MPS II. In MPS VII, however, one unique and distinguishing clinical feature is the unexpectedly high proportion of patients (41%) that had a history of NIHF. Presence of NIHF does not, by itself, predict the eventual severity of the clinical course, if the patient survives infancy.

    Matched MeSH terms: Glucuronidase/metabolism
  19. Salar U, Taha M, Ismail NH, Khan KM, Imran S, Perveen S, et al.
    Bioorg Med Chem, 2016 Apr 15;24(8):1909-18.
    PMID: 26994638 DOI: 10.1016/j.bmc.2016.03.020
    Thiadiazole derivatives 1-24 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50=2.16±0.01-58.06±1.60μM as compare to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted in order to establish the structure-activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques (1)H, (13)C NMR, and EIMS.
    Matched MeSH terms: Glucuronidase
  20. Arokiaraj P, Yeet Yeang H, Fong Cheong K, Hamzah S, Jones H, Coomber S, et al.
    Plant Cell Rep, 1998 May;17(8):621-625.
    PMID: 30736515 DOI: 10.1007/s002990050454
    Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex.
    Matched MeSH terms: Glucuronidase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links