Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Enkelmann HC, Bishop GD, Tong EM, Diong SM, Why YP, Khader M, et al.
    Int J Psychophysiol, 2005 May;56(2):185-97.
    PMID: 15804452
    This study tested the hypotheses that ambulatory heart rate and blood pressure would be higher for individuals high but not low in hostility when they experienced negative affect or social stress and that this interaction would be stronger for Indians compared with other Singapore ethnic groups. Ambulatory blood pressure monitoring was done on 108 male Singapore patrol officers as they went about their daily duties. After each BP measurement participants completed a computerized questionnaire including items on emotional experience. Individuals high in hostility showed higher systolic blood pressure when reporting negative affect whereas this was not true for those low in hostility. Ethnic differences were obtained such that Indians showed an increase in mean arterial pressure when angered whereas MAP was negatively related to anger for Malays and unrelated for Chinese. Also a three-way interaction between ethnicity, hostility, and social stress indicated that hostility and social stress interacted in their effects on DBP for Indian participants but not for Chinese or Malays. Finally, a three-way interaction was obtained between ethnicity, hostility and negative affect for heart rate in which heart rate increased with increasing levels of negative affect for Chinese high in hostility and Malays low in hostility but decreased with increasing negative affect for all other participants. These data are consistent with higher CHD rates among individuals high in hostility and also provide additional evidence on ethnic differences in cardiovascular reactivity in Singapore.
    Matched MeSH terms: Heart Rate/physiology
  2. Malik AA, Williams CA, Weston KL, Barker AR
    J Sports Sci Med, 2019 03;18(1):1-12.
    PMID: 30787646
    High-intensity interval exercise (HIIE) may not elicit prominent unpleasant feelings even with elevated perceived exertion and physiological stress in adolescents. However, the influence of different HIIE work intensities on the affective experience and cardiorespiratory responses is unknown. This study examined the acute affective, enjoyment, perceived exertion and cardiorespiratory responses to HIIE with different work intensities in adolescents. Participants (n = 16; 8 boys; age 12.0 ± 0.3 years) performed, on separate days, HIIE conditions consisting of 8 x 1-minute work-intervals at 70%, 85%, or 100% peak power separated by 75 seconds recovery at 20 W. Affect, enjoyment and rating of perceived exertion (RPE) were recorded before, during, and after HIIE. Heart rate (HR) and oxygen uptake were collected during HIIE. Affect declined in all conditions (p < 0.01) but 100%HIIE elicited significantly lower affect than 70%HIIE and 85%HIIE at work-interval 8 (all p < 0.02, ES > 1.74; 70%HIIE = 2.5 ± 0.8; 85%HIIE = 1.1 ± 1.5; 100%HIIE = -1.5 ± 1.4 on feeling scale). Similar enjoyment was evident during and after all conditions (all p > 0.44). RPE was significantly higher during 100%HIIE than 70%HIIE and 85%HIIE across all work-intervals (all p < 0.01, ES > 1.56). The majority of the participants attained ≥90%HRmax during 85%HIIE (87%) and 100%HIIE (100%), but not during 70%HIIE (6%). Affect responses during HIIE are dependent on the intensity of the work-interval and are not entirely negative (unpleasant feelings). Despite similar enjoyment, positive affect experienced during 70%HIIE and 85%HIIE could serve as a strategy to encourage exercise adoption and adherence in adolescents, but only 85%HIIE elicits sufficient HR stimulus to facilitate potential health benefits.
    Matched MeSH terms: Heart Rate/physiology
  3. Yusof AP, Yusoff NH, Suhaimi FW, Coote JH
    Auton Neurosci, 2009 Jun 15;148(1-2):50-4.
    PMID: 19349212 DOI: 10.1016/j.autneu.2009.03.005
    The aim of the present study was to determine if paraventricular-spinal vasopressin neurones participate in the sympatho-inhibitory effects of systemically administered atrial natriuretic peptide (ANP) on renal sympathetic nerve activity (RSNA). Experiments were carried out on male Sprague-Dawley rats anesthetized with 1.3 g/kg urethane. Changes in mean arterial pressure (mm Hg), heart rate (beats per minute) and RSNA (%) were measured following intravenous bolus administration of ANP (250 ng, 500 ng and 5 microg). Intrathecal application of selective V 1a receptor antagonist was performed to test for the involvement of supraspinal vasopressin pathways in mediating the effect on sympathetic outflow evoked by intravenous ANP administration. The results obtained demonstrated that both low and high doses of ANP caused renal sympathoinhibition (250 ng; - 7.5 +/- 1%, 500 ng; - 14.2 +/- 1%, 5 microg; - 16.4 +/- 2%), concomitant with vasodilation and bradycardia. After spinal vasopressin receptor blockade, the inhibitory effects of ANP were prevented and there was a small renal sympatho-excitation (250 ng; + 1.7 +/- 0.2%, 500 ng; + 6.1 +/- 0.03%, 5 microg; + 8.0 +/- 0.03%, P < 0.05). Therefore, the renal sympathetic nerve inhibition elicited by circulating ANP is dependent on the efficacy of a well established supraspinal vasopressin pathway. Since supraspinal vasopressin neurones without exception excite renal sympathetic neurones, it is suggested that ANP elicits this effect by activating cardiac vagal afferents that inhibit the spinally projecting vasopressin neurones at their origin in the paraventricular nucleus of the hypothalamus.
    Matched MeSH terms: Heart Rate/physiology
  4. Mahadi KM, Lall VK, Deuchars SA, Deuchars J
    Brain Stimul, 2019 05 06;12(5):1151-1158.
    PMID: 31129152 DOI: 10.1016/j.brs.2019.05.002
    BACKGROUND: Electrical stimulation on select areas of the external auricular dermatome influences the autonomic nervous system. It has been postulated that activation of the Auricular Branch of the Vagus Nerve (ABVN) mediates such autonomic changes. However, the underlying neural pathways mediating these effects are unknown and, further, our understanding of the anatomical distribution of the ABVN in the auricle has now been questioned.

    OBJECTIVE: To investigate the effects of electrical stimulation of the tragus on autonomic outputs in the rat and probe the underlying neural pathways.

    METHODS: Central neuronal projections from nerves innervating the external auricle were investigated by injections of the transganglionic tracer cholera toxin B chain (CTB) into the right tragus of Wistar rats. Physiological recordings of heart rate, perfusion pressure, respiratory rate and sympathetic nerve activity were made in an anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat and changes in response to electrical stimulation of the tragus analysed.

    RESULTS: Neuronal tracing from the tragus revealed that the densest CTB labelling was within laminae III-IV of the dorsal horn of the upper cervical spinal cord, ipsilateral to the injection sites. In the medulla oblongata, CTB labelled afferents were observed in the paratrigeminal nucleus, spinal trigeminal tract and cuneate nucleus. Surprisingly, only sparse labelling was observed in the vagal afferent termination site, the nucleus tractus solitarius. Recordings made from rats at night time revealed more robust sympathetic activity in comparison to day time rats, thus subsequent experiments were conducted in rats at night time. Electrical stimulation was delivered across the tragus for 5 min. Direct recording from the sympathetic chain revealed a central sympathoinhibition by up to 36% following tragus stimulation. Sympathoinhibition remained following sectioning of the cervical vagus nerve ipsilateral to the stimulation site, but was attenuated by sectioning of the upper cervical afferent nerve roots.

    CONCLUSIONS: Inhibition of the sympathetic nervous system activity upon electrical stimulation of the tragus in the rat is mediated at least in part through sensory afferent projections to the upper cervical spinal cord. This challenges the notion that tragal stimulation is mediated by the auricular branch of the vagus nerve and suggests that alternative mechanisms may be involved.

    Matched MeSH terms: Heart Rate/physiology*
  5. Deuchars SA, Lall VK, Clancy J, Mahadi M, Murray A, Peers L, et al.
    Exp Physiol, 2018 Mar 01;103(3):326-331.
    PMID: 29205954 DOI: 10.1113/EP086433
    What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised.
    Matched MeSH terms: Heart Rate/physiology
  6. Husain R, Cheah SH, Duncan MT
    Singapore Med J, 1996 Aug;37(4):398-401.
    PMID: 8993142
    The investigation examined the possibility that observance of Ramadan by Moslems in Malaysia is associated with modification of circulatory parameters. Cardiovascular reactivity was investigated employing the cold hand immersion test as the stressor stimulus. Resultant data showed increased blood pressures and vascular resistance during Ramadan in the absence of cold stimulus while the magnitude of the maximal cardiac and vascular response to the applied stressor which served as indicators of reactivity was not affected by the Ramadan situation.
    Matched MeSH terms: Heart Rate/physiology
  7. Palaniappan R, Phon-Amnuaisuk S, Eswaran C
    Int J Cardiol, 2015;190:262-3.
    PMID: 25932800 DOI: 10.1016/j.ijcard.2015.04.175
    Matched MeSH terms: Heart Rate/physiology*
  8. Idrees I, Bellato A, Cortese S, Groom MJ
    Neurosci Biobehav Rev, 2023 Jan;144:104968.
    PMID: 36427764 DOI: 10.1016/j.neubiorev.2022.104968
    We carried out a systematic review and meta-analysis to investigate the effects of stimulant and non-stimulant medications on autonomic functioning in people with ADHD (PROSPERO: CRD42020212439). We searched (9th August 2021) PsycInfo, MEDLINE, EMBASE, Web of Science and The Cochrane Library, for randomised and non-randomised studies reporting indices of autonomic activity, (electrodermal, pupillometry and cardiac), pre- and post-medication exposure in people meeting DSM/ICD criteria for ADHD. In the narrative syntheses, we included 5 electrodermal studies, 1 pupillometry study and 57 studies investigating heart rate and blood pressure. In the meta-analyses, 29 studies were included on blood pressure and 32 on heart rate. Administration of stimulants, and to a lesser degree, non-stimulants increased heart rate and blood pressure in people with ADHD. Similarly, an upregulation of arousal, reflected in increased electrodermal activity and pupil diameter was observed following stimulant use. Yet, the methodological diversity of studies presented in this review reinforces the need for more standardised and rigorous research to fully understand the relationship between arousal, medication, and behaviour in ADHD.
    Matched MeSH terms: Heart Rate/physiology
  9. Jahan I, Begum M, Akhter S, Islam MZ, Jahan N, Samad N, et al.
    Ann Afr Med, 2021 7 3;20(2):69-77.
    PMID: 34213471 DOI: 10.4103/aam.aam_114_20
    Introduction: Alternate nostril breathing (ANB) is an effective breathing exercise with therapeutic benefits on cardiorespiratory functions for healthy and diseased individuals. This study was conducted to assess the effects of ANB exercise on cardiorespiratory tasks in healthy adults.

    Materials and Methods: This randomized experimental study was conducted in the Department of Physiology, Chittagong Medical College, Chattogram, from July 2017 to June 2018. A total of 100 1st-year students, aged between 18 and 20 years, were included by a random sampling method. Fifty participants (25 males and 25 females) were enrolled in the experimental group, while age- and body mass index-matched another 50 participants (25 males and 25 females) served as the control group. Experimental group participants performed ANB exercise for 4 weeks. Cardiorespiratory parameters (pulse rate, blood pressure, forced vital capacity, forced expiratory volume in 1st s [FEV1], and peak expiratory flow rate [PEFR] were measured. Data were taken at the start and after 4 weeks in both groups.

    Results: Independent t-test showed no significant differences in the cardiorespiratory functions between the experimental and control groups among the male and female participants, except for the females' PEFR which showed small differences. On the other hand, repeated measure ANOVA shows significant improvement in the experimental groups among males (P < 0.001-0.028) and females (P < 0.001-0.001) in all the cardiorespiratory functions measured, except for the FEV1 and PEFR among males.

    Conclusion: The results of this study suggest that cardiorespiratory functions were improved after breathing exercise, and therefore, ANB can be recommended for increasing cardiorespiratory efficiency.

    Matched MeSH terms: Heart Rate/physiology*
  10. Sharifah Maimunah SM, Hashim HA
    Percept Mot Skills, 2016 Feb;122(1):227-37.
    PMID: 27420318 DOI: 10.1177/0031512515625383
    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time.
    Matched MeSH terms: Heart Rate/physiology*
  11. Hamzaid NA, Tean LT, Davis GM, Suhaimi A, Hasnan N
    Spinal Cord, 2015 May;53(5):375-9.
    PMID: 25366533 DOI: 10.1038/sc.2014.187
    STUDY DESIGN: Prospective study of two cases.

    OBJECTIVES: To describe the effects of electrical stimulation (ES) therapy in the 4-week management of two sub-acute spinal cord-injured (SCI) individuals (C7 American Spinal Injury Association Impairment Scale (AIS) B and T9 AIS (B)).

    SETTING: University Malaya Medical Centre, Kuala Lumpur, Malaysia.

    METHODS: A diagnostic tilt-table test was conducted to confirm the presence of orthostatic hypotension (OH) based on the current clinical definitions. Following initial assessment, subjects underwent 4 weeks of ES therapy 4 times weekly for 1 h per day. Post-tests tilt table challenge, both with and without ES on their rectus abdominis, quadriceps, hamstrings and gastrocnemius muscles, was conducted at the end of the study (week 5). Subjects' blood pressures (BP) and heart rates (HR) were recorded every minute during pre-test and post-tests. Orthostatic symptoms, as well as the maximum tolerance time that the subjects could withstand head up tilt at 60°, were recorded.

    RESULTS: Subject A improved his orthostatic symptoms, but did not recover from clinically defined OH based on the 20-min duration requirement. With concurrent ES therapy, 60° head up tilt BP was 89/62 mm Hg compared with baseline BP of 115/71 mm Hg. Subject B fully recovered from OH demonstrated by BP of 105/71 mm Hg during the 60° head up tilt compared with baseline BP of 124/77 mm Hg. Both patients demonstrated longer tolerance time during head up tilt with concomitant ES (subject A: pre-test 4 min, post-test without ES 6 min, post-test with ES 12 min; subject B: pre-test 4 min, post-test without ES 28 min, post-test with ES 60 min).

    CONCLUSIONS: Weekly ES therapy had positive effect on OH management in sub-acute SCI individuals.

    Matched MeSH terms: Heart Rate/physiology
  12. Teoh AN, Hilmert C
    Br J Health Psychol, 2018 11;23(4):1040-1065.
    PMID: 30084181 DOI: 10.1111/bjhp.12337
    PURPOSE: The stress-buffering hypothesis (Cohen & McKay, 1984, Handbook of psychology and health IV: Social psychological aspects of health (pp. 253-256). Hillsdale, NJ: Lawrence Erlbaum) suggests that one way social support enhances health is by attenuating cardiovascular reactivity (CVR) to stress. Research that has tested this hypothesis has reported inconsistent findings. In this review, we systematically reviewed those findings and proposed a dual-effect model of social support and CVR as a potential explanation for the inconsistency in the literature. Specifically, we proposed that when participants are more engaged during a stressor, social support acts primarily as social comfort, attenuating CVR; and when participants are not engaged, social support acts primarily as social encouragement, elevating CVR.

    METHODS: We reviewed 22 previous studies that (1) empirically manipulated social support in a stressful situation, (2) measured CVR, and (3) tested a moderator of social support effects on CVR.

    RESULTS: Although a majority of studies reported a CVR-mitigating effect of social support resulting in an overall significant combined p-value, we found that there were different effects of social support on CVR when we considered high- and low-engagement contexts. That is, compared to control conditions, social support lowered CVR in more engaging situations but had no significant effect on CVR in less engaging situations.

    CONCLUSION: Our results suggest that a dual-effect model of social support effects on CVR may better capture the nature of social support, CVR, and health associations than the buffering hypothesis and emphasize a need to better understand the health implications of physiological reactivity in various contexts. Statement of contribution What is already known on this subject? According to the stress-buffering hypothesis (Cohen & McKay, ), one pathway social support benefits health is through mitigating the physiological arousal caused by stress. However, previous studies that examined the effects of social support on blood pressure and heart rate changes were not consistently supporting the hypothesis. Some studies reported that social support causes elevations in cardiovascular reactivity (CVR) to stress (Anthony & O'Brien, ; Hilmert, Christenfeld, & Kulik, ; Hilmert, Kulik, & Christenfeld, ) and others showed no effect of social support on CVR (Christian & Stoney, ; Craig & Deichert, ; Gallo, Smith, & Kircher, ). What does this study add? When participants were in more engaging conditions, social support decreased CVR relative to no support. When participants were in less engaging conditions, social support did not have a significant effect on CVR. Provide an alternative way to explain the ways social support affects cardiac health.

    Matched MeSH terms: Heart Rate/physiology*
  13. Wong KI, Ho MM
    PMID: 19162703 DOI: 10.1109/IEMBS.2008.4649200
    Extended patient monitoring has become increasingly important for detection of cardiac conditions, such as irregularities in the rhythms of the heart, while patient is practicing normal daily activity. This paper presents a design of a single lead wireless cardiac rhythm interpretive instrument that capable of capture the electrocardiogram (ECG) in digital format and transmitted to a remote base-station (i.e. PC) for storage and further interpretation. The design has achieved high quality of ECG and free of interference in the presence of motion.
    Matched MeSH terms: Heart Rate/physiology*
  14. Wolkow AP, Rajaratnam SMW, Wilkinson V, Shee D, Baker A, Lillington T, et al.
    Sleep Health, 2020 06;6(3):366-373.
    PMID: 32340910 DOI: 10.1016/j.sleh.2020.03.005
    OBJECTIVES: This study examined the influence of a wrist-worn heart rate drowsiness detection device on heavy vehicle driver safety and sleep and its ability to predict driving events under naturalistic conditions.

    DESIGN: Prospective, non-randomized trial.

    SETTING: Naturalistic driving in Malaysia.

    PARTICIPANTS: Heavy vehicle drivers in Malaysia were assigned to the Device (n = 25) or Control condition (n = 34).

    INTERVENTION: Both conditions were monitored for driving events at work over 4-weeks in Phase 1, and 12-weeks in Phase 2. In Phase 1, the Device condition wore the device operated in the silent mode (i.e., no drowsiness alerts) to examine the accuracy of the device in predicting driving events. In Phase 2, the Device condition wore the device in the active mode to examine if drowsiness alerts from the device influenced the rate of driving events (compared to Phase 1).

    MEASUREMENTS: All participants were monitored for harsh braking and harsh acceleration driving events and self-reported sleep duration and sleepiness daily.

    RESULTS: There was a significant decrease in the rate of harsh braking events (Rate ratio = 0.48, p 

    Matched MeSH terms: Heart Rate/physiology*
  15. Jahan I, Begum M, Akhter S, Islam Z, Haque M, Jahan N
    J Popul Ther Clin Pharmacol, 2020 06 11;27(2):e68-e77.
    PMID: 32543162 DOI: 10.15586/jptcp.v27i2.675
    Alternate nostril breathing (ANB) is one of the best and easiest breathing exercises. ANB exercise has beneficial effects on cardiac function in healthy and diseased people. The objectives of this study were to assess the effects of ANB exercise on cardiac physiology among healthy medical students. This was a prospective interventional study that was conducted in the Department of Physiology, Chittagong Medical College (CMC), Chattogram, Bangladesh, from July 2017 to June 2018. A total of 100 research participants (RPs) aged 18-20 years, Year-I medical students of CMC, were selected. A simple random sampling method was adopted. The selection was done after the inclusion and exclusion criteria were applied. The age and body mass index (BMI) of the RPs were analogous in both the control and experimental groups. Cardiac parameters, like pulse and blood pressure (BP), were measured. The initial baseline data were recorded for both groups and after 4 weeks. The research respondents of the experimental group performed ANB exercise for 4 weeks. The mean value pulse and BP were significantly (p < 0.001) changed after breathing exercise, compared to the values before the breathing exercise. The results of this study suggest that cardiac function significantly improves after the breathing exercise. Therefore, ANB can be recommended for increasing cardiac efficiency.
    Matched MeSH terms: Heart Rate/physiology
  16. Kulur AB, Haleagrahara N, Adhikary P, Jeganathan PS
    Arq. Bras. Cardiol., 2009 Jun;92(6):423-9, 440-7, 457-63.
    PMID: 19629309
    BACKGROUND: Reduced heart rate variability is associated with an unfavorable prognosis in patients with ischemic heart disease and diabetes. Whether change in breathing pattern can modify the risk factor in these patients has not been definitely proved.
    OBJECTIVE: To evaluate the effect of diaphragmatic breathing on heart rate variability (HRV) in ischemic heart disease patients with diabetes.
    METHODS: Study population consisted of 145 randomly selected male patients of which 45 had ischemic heart disease (IHD), 52 had IHD and diabetes (IHD-DM) and the remaining 48 had IHD and diabetic neuropathy (IHD-DN). HRV was assessed by 5 minute-electrocardiogram using the time domain method. The intervention group was divided into compliant and non-compliant groups and follow-up recording was carried out after three months and one year.
    RESULTS: Baseline recordings showed a significant decrease in HRV in ischemic heart disease (IHD) patients with or without diabetes (p<0.01). IHD patients had higher HRV than IHD patients with diabetes (p<0.01) or diabetic neuropathy (p<0.01). Increase in HRV was observed in patients who practiced diaphragmatic breathing for three months (IHD-DM: p<0.01; IHD-DN: p<0.05) and for one year (IHD-DM: p<0.01; IHD-DN: p<0.01). The HRV significantly decreased after one year in non-compliant patients. The regular practice of diaphragmatic breathing also improved the glycemic index in these patients.
    CONCLUSION: The regular practice of diaphragmatic breathing significantly improves heart rate variability with a favorable prognostic picture in ischemic heart disease patients who have diabetes. These effects seem to be potentially beneficial in the management of IHD patients with diabetes.
    Matched MeSH terms: Heart Rate/physiology*
  17. Khan SA, Sattar MA, Rathore HA, Abdulla MH, Ud Din Ahmad F, Ahmad A, et al.
    Acta Physiol (Oxf), 2014 Mar;210(3):690-700.
    PMID: 24438102 DOI: 10.1111/apha.12237
    There is evidence that in chronic renal failure, the sympathetic nervous system is activated. This study investigated the role of the renal innervation in suppressing high- and low-pressure baroreflex control of renal sympathetic nerve activity and heart rate in cisplatin-induced renal failure.
    Matched MeSH terms: Heart Rate/physiology*
  18. Lan BL, Liew YW, Toda M, Kamsani SH
    Chaos, 2020 May;30(5):053137.
    PMID: 32491883 DOI: 10.1063/1.5130524
    Complex dynamical systems can shift abruptly from a stable state to an alternative stable state at a tipping point. Before the critical transition, the system either slows down in its recovery rate or flickers between the basins of attraction of the alternative stable states. Whether the heart critically slows down or flickers before it transitions into and out of paroxysmal atrial fibrillation (PAF) is still an open question. To address this issue, we propose a novel definition of cardiac states based on beat-to-beat (RR) interval fluctuations derived from electrocardiogram data. Our results show the cardiac state flickers before PAF onset and termination. Prior to onset, flickering is due to a "tug-of-war" between the sinus node (the natural pacemaker) and atrial ectopic focus/foci (abnormal pacemakers), or the pacing by the latter interspersed among the pacing by the former. It may also be due to an abnormal autonomic modulation of the sinus node. This abnormal modulation may be the sole cause of flickering prior to termination since atrial ectopic beats are absent. Flickering of the cardiac state could potentially be used as part of an early warning or screening system for PAF and guide the development of new methods to prevent or terminate PAF. The method we have developed to define system states and use them to detect flickering can be adapted to study critical transition in other complex systems.
    Matched MeSH terms: Heart Rate/physiology
  19. Houston SA, Ugusman A, Gnanadesikan S, Kennedy S
    Platelets, 2017 May;28(3):295-300.
    PMID: 27681689 DOI: 10.1080/09537104.2016.1218456
    Succinobucol is a phenolic antioxidant with anti-inflammatory and antiplatelet effects. Given the importance of oxidant stress in modulating platelet-platelet and platelet-vessel wall interactions, the aim of this study was to establish if antioxidant activity was responsible for the antiplatelet activity of succinobucol. Platelet aggregation in response to collagen and adenosine diphosphate (ADP) was studied in rabbit whole blood and platelet-rich plasma using impedance aggregometry. The effect of oxidant stress on aggregation, platelet lipid peroxides, and vascular tone was studied by incubating platelets, washed platelets or preconstricted rabbit iliac artery rings respectively with a combination of xanthine and xanthine oxidase (X/XO). To study the effect of succinobucol in vivo, anaesthetized rats were injected with up to 150 mg/kg succinobucol and aggregation measured in blood removed 15 mins later. Succinobucol (10-5-10-4M) significantly attenuated platelet aggregation to collagen and ADP in whole blood and platelet-rich plasma. X/XO significantly increased aggregation to collagen and platelet lipid peroxides and this was reversed by succinobucol. Addition of X/XO to denuded rabbit iliac arteries caused a dose-dependent relaxation which was significantly inhibited by succinobucol. In vivo administration up to 150 mg/kg had no effect on heart rate or mean arterial blood pressure but significantly inhibited platelet aggregation to collagen ex vivo. In conclusion, succinobucol displays anti-platelet activity in rabbit and rat blood and reverses the increase in platelet aggregation in response to oxidant stress.
    Matched MeSH terms: Heart Rate/physiology
  20. Ishak A, Hashim HA, Krasilshchikov O
    J Sports Med Phys Fitness, 2016 Sep;56(9):961-7.
    PMID: 26004044
    BACKGROUND: The present study investigated the effects of a 2-week modified exponential taper on physiological adaptation and time trial performance among junior cyclists.

    METHODS: Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis.

    RESULTS: Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups.

    CONCLUSIONS: It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.

    Matched MeSH terms: Heart Rate/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links