Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Korada HY, Arora E, Maiya GA, Rao S, Hande M, Shetty S, et al.
    Curr Diabetes Rev, 2023;19(9):e290422204244.
    PMID: 37622461 DOI: 10.2174/1573399818666220429085256
    BACKGROUND: Diabetic peripheral neuropathy is a severe complication of type 2 diabetes mellitus. The most common symptoms are neuropathic pain and altered sensorium due to damage to small nerve fibers. Altered plantar pressure distribution is also a major risk factor in diabetic peripheral neuropathy, leading to diabetic foot ulcers.

    OBJECTIVE: The objective of this systematic review was to analyze the various studies involving photobiomodulation therapy on neuropathic pain and plantar pressure distribution in diabetic peripheral neuropathy.

    METHODS: We conducted a systematic review (PubMed, Web of Science, CINAHL, and Cochrane) to summarise the evidence on photobiomodulation therapy for Diabetic Peripheral Neuropathy with type 2 diabetes mellitus. Randomized and non-randomized studies were included in the review.

    RESULTS: This systematic review included eight studies in which photobiomodulation therapy showed improvement in neuropathic pain and nerve conduction velocity. It also reduces plantar pressure distribution, which is a high risk for developing foot ulcers.

    CONCLUSION: We conclude that photobiomodulation therapy is an effective, non-invasive, and costefficient means to improve neuropathic pain and altered plantar pressure distribution in diabetic peripheral neuropathy.

    Matched MeSH terms: Neural Conduction
  2. Chuar PF, Ng YT, Phang SCW, Koay YY, Ho JI, Ho LS, et al.
    Nutrients, 2021 Oct 25;13(11).
    PMID: 34836025 DOI: 10.3390/nu13113770
    Diabetic peripheral neuropathy (DPN) is the most common microvascular complication of diabetes that affects approximately half of the diabetic population. Up to 53% of DPN patients experience neuropathic pain, which leads to a reduction in the quality of life and work productivity. Tocotrienols have been shown to possess antioxidant, anti-inflammatory, and neuroprotective properties in preclinical and clinical studies. This study aimed to investigate the effects of tocotrienol-rich vitamin E (Tocovid SuprabioTM) on nerve conduction parameters and serum biomarkers among patients with type 2 diabetes mellitus (T2DM). A total of 88 patients were randomized to receive 200 mg of Tocovid twice daily, or a matching placebo for 12 months. Fasting blood samples were collected for measurements of HbA1c, renal profile, lipid profile, and biomarkers. A nerve conduction study (NCS) was performed on all patients at baseline and subsequently at 2, 6, 12 months. Patients were reassessed after 6 months of washout. After 12 months of supplementation, patients in the Tocovid group exhibited highly significant improvements in conduction velocity (CV) of both median and sural sensory nerves as compared to those in the placebo group. The between-intervention-group differences (treatment effects) in CV were 1.60 m/s (95% CI: 0.70, 2.40) for the median nerve and 2.10 m/s (95% CI: 1.50, 2.90) for the sural nerve. A significant difference in peak velocity (PV) was also observed in the sural nerve (2.10 m/s; 95% CI: 1.00, 3.20) after 12 months. Significant improvements in CV were only observed up to 6 months in the tibial motor nerve, 1.30 m/s (95% CI: 0.60, 2.20). There were no significant changes in serum biomarkers, transforming growth factor beta-1 (TGFβ-1), or vascular endothelial growth factor A (VEGF-A). After 6 months of washout, there were no significant differences from baseline between groups in nerve conduction parameters of all three nerves. Tocovid at 400 mg/day significantly improve tibial motor nerve CV up to 6 months, but median and sural sensory nerve CV in up to 12 months of supplementation. All improvements diminished after 6 months of washout.
    Matched MeSH terms: Neural Conduction/drug effects*
  3. Raja J, Balaikerisnan T, Ramanaidu LP, Goh KJ
    Int J Rheum Dis, 2021 Mar;24(3):347-354.
    PMID: 33432774 DOI: 10.1111/1756-185X.14042
    AIM: The reported prevalence of peripheral neuropathy in systemic sclerosis (SSc) is variable between 0.01% to 28%, probably due to differences in sample size, study design and population. Our aim is to determine the prevalence of large fiber peripheral neuropathy in SSc and to identify any contributing factors.

    METHOD: A prospective cross-sectional study of 60 SSc patients were evaluated for large fiber neuropathy using the modified clinical Total Neuropathy Score (cTNS) and nerve conduction study (NCS) of the upper and lower limbs. A combination of clinical (cTNS score ≥ 2) and NCS criteria (≥2 abnormal nerves including 1 sural [symmetrical polyneuropathy] and NCS abnormalities consistent with individual nerves/nerve roots [focal neuropathy]) was used to diagnose peripheral neuropathy.

    RESULTS: The majority had limited cutaneous subset (75%). Mean age was 55.73 (SD ± 13.04) years and mean disease duration was 8.61 (SD ± 8.09) years. Twenty-two (36.7%) had combined clinical and NCS criteria for peripheral neuropathy, 14 (23.3%) with symmetrical polyneuropathy and 8 (13.3%) with focal neuropathy. Symmetrical polyneuropathy patients had significantly lower hemoglobin levels (11.2 vs. 12.35 g/L; P = .047). Serum vitamin B12 levels were normal, therefore excluding vitamin B12 deficiency. No other associations were found for both polyneuropathy and focal neuropathy with demography, co-morbid diseases and SSc disease factors such as Raynaud's phenomenon and modified Rodnan skin score.

    CONCLUSION: Large fiber neuropathy is common in SSc patients, which could contribute to non-lethal burden in SSc with sensory loss and muscle weakness. Apart from lower hemoglobin in polyneuropathy, there were no associations with disease-specific features or co-morbid diseases.

    Matched MeSH terms: Neural Conduction/physiology*
  4. Fong SY, Raja J, Wong KT, Goh KJ
    Rheumatol Int, 2021 02;41(2):355-360.
    PMID: 32488429 DOI: 10.1007/s00296-020-04610-8
    Asymptomatic electrophysiological peripheral neuropathy is described in systemic lupus erythematosus (SLE) patients. To determine if SLE could have an even earlier effect on peripheral nerve function even before the development of electrophysiological abnormalities, we compared nerve conduction studies (NCS) of SLE patients without electrophysiological or clinical peripheral neuropathy with healthy controls. Consecutive SLE patients without clinical neuropathy (or other known causes of neuropathy) underwent sensory and motor NCS of all four limbs. Results of 61 patients without electrophysiological criteria of neuropathy were compared with age- and gender-matched controls. Although still within the laboratory's range of normal values, significant differences were found in several NCS parameters between patients and controls. SLE patients had lower amplitudes for ulnar, fibular, and tibial compound muscle action potentials (CMAP) and sural sensory nerve action potentials (SNAP); slower conduction velocities for median, ulnar, and fibular motor nerves, and median, ulnar and sural sensory nerves. SLE patients also had longer minimum F-wave latencies for median, ulnar, fibular, and tibial nerves. H reflexes were more often absent in patients. Correlations were found between the number of disease relapses and motor conduction velocities of the fibular and tibial nerves. SLE may have early effect on peripheral nerve function in patients even before they develop electrophysiological or clinical neuropathy.
    Matched MeSH terms: Neural Conduction*
  5. Haque F, Reaz MBI, Ali SHM, Arsad N, Chowdhury MEH
    Sci Rep, 2020 12 10;10(1):21770.
    PMID: 33303857 DOI: 10.1038/s41598-020-78787-0
    Despite the availability of various clinical trials that used different diagnostic methods to identify diabetic sensorimotor polyneuropathy (DSPN), no reliable studies that prove the associations among diagnostic parameters from two different methods are available. Statistically significant diagnostic parameters from various methods can help determine if two different methods can be incorporated together for diagnosing DSPN. In this study, a systematic review, meta-analysis, and trial sequential analysis (TSA) were performed to determine the associations among the different parameters from the most commonly used electrophysiological screening methods in clinical research for DSPN, namely, nerve conduction study (NCS), corneal confocal microscopy (CCM), and electromyography (EMG), for different experimental groups. Electronic databases (e.g., Web of Science, PubMed, and Google Scholar) were searched systematically for articles reporting different screening tools for diabetic peripheral neuropathy. A total of 22 studies involving 2394 participants (801 patients with DSPN, 702 controls, and 891 non-DSPN patients) were reviewed systematically. Meta-analysis was performed to determine statistical significance of difference among four NCS parameters, i.e., peroneal motor nerve conduction velocity, peroneal motor nerve amplitude, sural sensory nerve conduction velocity, and sural sensory nerve amplitude (all p 
    Matched MeSH terms: Neural Conduction*
  6. Tan CY, Razali SNO, Goh KJ, Shahrizaila N
    J Peripher Nerv Syst, 2020 09;25(3):256-264.
    PMID: 32511817 DOI: 10.1111/jns.12398
    We aimed to evaluate the key diagnostic features of Guillain-Barré syndrome (GBS) in Malaysian patients and validate the Brighton criteria. This was a retrospective study of patients presenting with GBS and Miller Fisher syndrome (MFS) between 2010 and 2019. The sensitivity of the Brighton criteria was evaluated. A total of 128 patients (95 GBS, 33 MFS) were included. In the GBS cohort, 92 (97%) patients presented with symmetrical limb weakness. Reflexes were depressed or absent in 90 (95%) patients. Almost all patients (94, 99%) followed a monophasic disease course, with 5 (5%) patients experiencing treatment-related fluctuations. Cerebrospinal fluid (CSF) albuminocytological dissociation was seen in 62/84 (73%) patients. Nerve conduction study (NCS) revealed neuropathy in 90/94 (96%) patients. In GBS patients with complete dataset (84), 56 (67%) patients reached level 1 of the Brighton criteria, 21 (25%) reached level 2, 3 (4%) reached level 3, and 4 (5%) reached level 4. In MFS, the clinical triad was present in 25 (76%) patients. All patients had a monophasic course. CSF albuminocytological dissociation was present in 10/25 (40%) patients. NCS was normal or showed sensory neuropathy in 25/33 (76%) patients. In MFS patients with complete dataset (25), 5 (20%) patients reached level 1 of the Brighton criteria, 14 (56%) reached level 2, 2 (8%) reached level 3, and 4 (16%) reached level 4. Inclusion of antiganglioside antibodies improved the sensitivity of the Brighton criteria in both cohorts. In the Malaysian cohort, the Brighton criteria showed a moderate to high sensitivity in reaching the highest diagnostic certainty of GBS, but the sensitivity was lower in MFS.
    Matched MeSH terms: Neural Conduction/physiology
  7. Hussin HM, Lawi MM, Haflah NHM, Kassim AYM, Idrus RBH, Lokanathan Y
    Tissue Eng Regen Med, 2020 04;17(2):237-251.
    PMID: 32036567 DOI: 10.1007/s13770-019-00235-6
    BACKGROUND: Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model.

    METHODS: Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy.

    RESULTS: NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA.

    CONCLUSION: NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.

    Matched MeSH terms: Neural Conduction
  8. Tan CY, Sekiguchi Y, Goh KJ, Kuwabara S, Shahrizaila N
    Clin Neurophysiol, 2020 01;131(1):63-69.
    PMID: 31751842 DOI: 10.1016/j.clinph.2019.09.025
    OBJECTIVE: We aimed to develop a model that can predict the probabilities of acute inflammatory demyelinating polyneuropathy (AIDP) based on nerve conduction studies (NCS) done within eight weeks.

    METHODS: The derivation cohort included 90 Malaysian GBS patients with two sets of NCS performed early (1-20days) and late (3-8 weeks). Potential predictors of AIDP were considered in univariate and multivariate logistic regression models to develop a predictive model. The model was externally validated in 102 Japanese GBS patients.

    RESULTS: Median motor conduction velocity (MCV), ulnar distal motor latency (DML) and abnormal ulnar/normal sural pattern were independently associated with AIDP at both timepoints (median MCV: p = 0.038, p = 0.014; ulnar DML: p = 0.002, p = 0.003; sural sparing: p = 0.033, p = 0.009). There was good discrimination of AIDP (area under the curve (AUC) 0.86-0.89) and this was valid in the validation cohort (AUC 0.74-0.94). Scores ranged from 0 to 6, and corresponded to AIDP probabilities of 15-98% at early NCS and 6-100% at late NCS.

    CONCLUSION: The probabilities of AIDP could be reliably predicted based on median MCV, ulnar DML and ulnar/sural sparing pattern that were determined at early and late stages of GBS.

    SIGNIFICANCE: A simple and valid model was developed which can accurately predict the probability of AIDP.

    Matched MeSH terms: Neural Conduction/physiology*
  9. Ong TL, Goh KJ, Shahrizaila N, Wong KT, Tan CY
    Neurol India, 2019 12 21;67(6):1532-1535.
    PMID: 31857554 DOI: 10.4103/0028-3886.273621
    Distal acquired demyelinating symmetric neuropathy (DADS) is a variant of chronic inflammatory demyelinating polyneuropathy (CIDP) characterized by symmetrical, distal, sensory or sensorimotor involvement. DADS with M-protein (DADS-M) is less responsive to immunotherapy compared to those without M-protein (DADS-I). We report a case of DADS-I with severe clinical presentation viz. early hand involvement with marked wasting, inexcitable peripheral nerves on neurophysiology and poor response to immunotherapy. Despite the unusual presentation, ancillary tests including cerebrospinal fluid analysis, nerve biopsy and nerve ultrasound were supportive of an inflammatory demyelinating polyneuropathy. This case demonstrated the heterogeneity of the disorder and expands the clinical spectrum of DADS neuropathy.
    Matched MeSH terms: Neural Conduction/physiology
  10. Shivji Z, Jabeen A, Awan S, Khan S
    J Neurosci Rural Pract, 2019 4 20;10(2):178-184.
    PMID: 31001002 DOI: 10.4103/jnrp.jnrp_370_18
    Introduction: Most neurophysiology departments around the world establish their own normative data. However, ethnic differences are not taken into account. Our aim was to establish normal nerve conduction studies (NCS) data for routinely tested nerves in individuals of Pakistani (South Asian) origin and to compare with Western published data.

    Materials and Methods: One hundred healthy adults' nerves were assessed, using standardized techniques. Individuals were grouped into age groups. Gender differences were assessed.

    Results: Of the 100 volunteers, 49 were female and 51 were male. Their mean age was 39.8 years. Findings showed statistically significant prolongation of median distal motor latency (DML) and F-wave latency with age and reduction of median, ulnar, and sural sensory amplitudes as age increased. Gender differences showed consistent difference in the normal values for median, ulnar, and peroneal DMLs and respective F-wave latencies, which were significantly shorter in females. Sensory amplitudes of tested upper extremity nerves were significantly lower in males. Comparing with available data, our findings are similar to the Saudi population but significantly different from the American and multiethnic Malaysian populations. Pakistani individuals generally have significantly higher amplitudes and faster conduction velocities with similarities to South Asian studies.

    Conclusions: We recommend normative NCS parameters for commonly tested nerves for the Pakistani population, using standardized techniques to ensure highest quality testing and outcomes.

    Matched MeSH terms: Neural Conduction
  11. Fong CY, Aung HWW, Khairani A, Gan CS, Shahrizaila N, Goh KJ
    Brain Dev, 2018 Jun;40(6):507-511.
    PMID: 29459060 DOI: 10.1016/j.braindev.2018.02.001
    Bickerstaff's brainstem encephalitis (BBE) is a rare immune-mediated disorder characterized by ophthalmoplegia, ataxia and disturbance of consciousness, which may overlap with Guillain-Barré syndrome (GBS) if there is additional limb weakness. We report a 7-month-old boy presented with ophthalmoplegia followed by a rapidly ascending paralysis of all four limbs and disturbance of consciousness. The initial impression was BBE with overlapping GBS. This was supported by sequential nerve conduction study (NCS) findings compatible with an acute inflammatory demyelinating polyneuropathy (AIDP). He received intravenous pulse methylprednisolone, intravenous immunoglobulin and plasmapharesis with complete clinical recovery after 6 weeks of illness and improved NCS findings from week 16. This is the first case of paediatric BBE with overlapping GBS with an AIDP subtype of GBS. It expands the clinical spectrum of this condition in children. Our case highlights the importance of sequential NCS in paediatric BBE with overlapping GBS for accurate electrophysiological diagnosis and prognosis particularly if the first NCS findings are not informative.
    Matched MeSH terms: Neural Conduction*
  12. Bala U, Leong MP, Lim CL, Shahar HK, Othman F, Lai MI, et al.
    PLoS One, 2018;13(5):e0197711.
    PMID: 29795634 DOI: 10.1371/journal.pone.0197711
    BACKGROUND: Down syndrome (DS) is a genetic disorder caused by presence of extra copy of human chromosome 21. It is characterised by several clinical phenotypes. Motor dysfunction due to hypotonia is commonly seen in individuals with DS and its etiology is yet unknown. Ts1Cje, which has a partial trisomy (Mmu16) homologous to Hsa21, is well reported to exhibit various typical neuropathological features seen in individuals with DS. This study investigated the role of skeletal muscles and peripheral nerve defects in contributing to muscle weakness in Ts1Cje mice.

    RESULTS: Assessment of the motor performance showed that, the forelimb grip strength was significantly (P<0.0001) greater in the WT mice compared to Ts1Cje mice regardless of gender. The average survival time of the WT mice during the hanging wire test was significantly (P<0.0001) greater compared to the Ts1Cje mice. Also, the WT mice performed significantly (P<0.05) better than the Ts1Cje mice in the latency to maintain a coordinated motor movement against the rotating rod. Adult Ts1Cje mice exhibited significantly (P<0.001) lower nerve conduction velocity compared with their aged matched WT mice. Further analysis showed a significantly (P<0.001) higher population of type I fibres in WT compared to Ts1Cje mice. Also, there was significantly (P<0.01) higher population of COX deficient fibres in Ts1Cje mice. Expression of Myf5 was significantly (P<0.05) reduced in triceps of Ts1Cje mice while MyoD expression was significantly (P<0.05) increased in quadriceps of Ts1Cje mice.

    CONCLUSION: Ts1Cje mice exhibited weaker muscle strength. The lower population of the type I fibres and higher population of COX deficient fibres in Ts1Cje mice may contribute to the muscle weakness seen in this mouse model for DS.

    Matched MeSH terms: Neural Conduction/physiology*
  13. Chan YC, Punzalan-Sotelo AM, Kannan TA, Shahrizaila N, Umapathi T, Goh EJH, et al.
    Muscle Nerve, 2017 Nov;56(5):919-924.
    PMID: 28093784 DOI: 10.1002/mus.25577
    INTRODUCTION: In this study we propose electrodiagnostic criteria for early reversible conduction failure (ERCF) in axonal Guillain-Barré syndrome (GBS) and apply them to a cohort of GBS patients.

    METHODS: Serial nerve conduction studies (NCS) were retrospectively analyzed in 82 GBS patients from 3 centers. The criteria for the presence of ERCF in a nerve were: (i) a 50% increase in amplitude of distal compound muscle action potentials or sensory nerve action potentials; or (ii) resolution of proximal motor conduction block with an accompanying decrease in distal latencies or compound muscle action potential duration or increase in conduction velocities.

    RESULTS: Of 82 patients from 3 centers, 37 (45%) had ERCF, 21 (26%) had a contrasting evolution pattern, and 8 (10%) had both. Sixteen patients did not show an amplitude increase of at least 50%.

    CONCLUSION: Our proposed criteria identified a group of patients with a characteristic evolution of NCS abnormality that is consistent with ERCF. Muscle Nerve 56: 919-924, 2017.

    Matched MeSH terms: Neural Conduction/physiology*
  14. Uncini A, Ippoliti L, Shahrizaila N, Sekiguchi Y, Kuwabara S
    Clin Neurophysiol, 2017 07;128(7):1176-1183.
    PMID: 28521265 DOI: 10.1016/j.clinph.2017.03.048
    OBJECTIVE: To optimize the electrodiagnosis of Guillain-Barré syndrome (GBS) subtypes at first study.

    METHODS: The reference electrodiagnosis was obtained in 53 demyelinating and 45 axonal GBS patients on the basis of two serial studies and results of anti-ganglioside antibodies assay. We retrospectively employed sparse linear discriminant analysis (LDA), two existing electrodiagnostic criteria sets (Hadden et al., 1998; Rajabally et al., 2015) and one we propose that additionally evaluates duration of motor responses, sural sparing pattern and defines reversible conduction failure (RCF) in motor and sensory nerves at second study.

    RESULTS: At first study the misclassification error rates, compared to reference diagnoses, were: 15.3% for sparse LDA, 30% for our criteria, 45% for Rajabally's and 48% for Hadden's. Sparse LDA identified seven most powerful electrophysiological variables differentiating demyelinating and axonal subtypes and assigned to each patient the diagnostic probability of belonging to either subtype. At second study 46.6% of axonal GBS patients showed RCF in two motor and 8.8% in two sensory nerves.

    CONCLUSIONS: Based on a single study, sparse LDA showed the highest diagnostic accuracy. RCF is present in a considerable percentage of axonal patients.

    SIGNIFICANCE: Sparse LDA, a supervised statistical method of classification, should be introduced in the electrodiagnostic practice.

    Matched MeSH terms: Neural Conduction/physiology
  15. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, et al.
    Sci Rep, 2017 May 31;7(1):2746.
    PMID: 28566682 DOI: 10.1038/s41598-017-01849-3
    A model of solitonic conduction in neuronal branchlets with microstructure is presented. The application of cable theory to neurons with microstructure results in a nonlinear cable equation that is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic interaction: colliding waves can penetrate through each other, and continue fully intact as the exact pulses that entered the collision. These findings indicate that microstructure when polarized can sustain solitary waves that propagate at a constant velocity without attenuation or distortion in the absence of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).
    Matched MeSH terms: Neural Conduction/physiology*
  16. Shahrizaila N, Noto Y, Simon NG, Huynh W, Shibuya K, Matamala JM, et al.
    Clin Neurophysiol, 2017 Jan;128(1):227-232.
    PMID: 27940147 DOI: 10.1016/j.clinph.2016.11.010
    OBJECTIVE: The utility of quantitative muscle ultrasound as a marker of disease severity in Charcot-Marie-Tooth (CMT) disease subtypes was investigated.

    METHODS: Muscle ultrasound was prospectively performed on 252 individual muscles from 21 CMT patients (9 CMT1A, 8 CMTX1, 4 CMT2A) and compared to 120 muscles from 10 age and gender-matched controls. Muscle ultrasound recorded echogenicity and thickness in representative muscles including first dorsal interosseus (FDI) and tibialis anterior (TA).

    RESULTS: Muscle volume of FDI and thickness of TA correlated with MRC strength. Muscle echogenicity was significantly increased in FDI (65.05 vs 47.09; p<0.0001) and TA (89.45 vs 66.30; p<0.0001) of CMT patients. In TA, there was significantly higher muscle thickness (23 vs 18 vs 16mm; p<0.0001) and lower muscle echogenicity (80 vs 95 vs 108; p<0.0001) in CMT1A compared to CMTX1 and CMT2A. This corresponded to disease severity based on muscle strength (MRC grading CMT1A vs CMTX1 vs CMT2A: 59 vs 48 vs 44; p=0.002).

    CONCLUSION: In CMT, quantitative muscle ultrasound of FDI and TA is a useful marker of disease severity.

    SIGNIFICANCE: The current findings suggest that quantitative muscle ultrasound has potential as a surrogate marker of disease progression in future interventional trials in CMT.

    Matched MeSH terms: Neural Conduction/physiology
  17. Sambasevam, Yogesvari, Wong, Siong Jiun, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Mohd Roslan Sulaiman, Mohd Khairi Hussain, et al.
    MyJurnal
    Introduction: Active compounds derived from plants are able to inhibit nerve conduction. Cardamonin, a naturally occurring chalcone, manifests anti-nociceptive, anti-inflammatory and anti-neuropathy properties. Consequently, cardamonin may potentially inhibit nerve action potential, whereby, it affects the nerve conduction. Compound action potential is the sum of the activity which is measured from a nerve trunk. Objective: The experiment was carried out to investigate the inhibitory effect of cardamonin on compound action potentials and its possible mechanism of action on frog sciatic nerve. Methodology: LabTutor software was used to record compound action potentials in frog sciatic nerve. Sciatic nerve was isolated from the frog and soaked in Ringer’s solution. Stimulating electrodes were used to stimulate the nerve and recording electrodes were used to record compound action potentials. Compound action potential of the nerve were recorded before and after treatments [vehicle, cardamonin (0.5, 1 & 2 mg/ml) & morphine (3mg/ml)]. Participation of opioid system was investigated by pre-treating the nerve with naloxone and followed by cardamonin. All the data were recorded and analysed via LabTutor software. The data were analysed by using Two-way ANOVA followed by Bonferonni’s post hoc test with significant value at P < 0.05. Results: The outcomes showed that all the doses of cardamonin significantly reduced the peak amplitude of compound action potential in frog sciatic nerves. Besides, co-treatment of naloxone and cardamonin significantly (P < 0.001) reversed the effect of cardamonin on peak amplitude of compound action potential, suggesting the involvement of opioid receptors to inhibit nerve conduction. Conclusion: Cardamonin reduces the nerve signal conduction via activation of opioid receptors to modulate pain and contribute to the analgesic effects.
    Matched MeSH terms: Neural Conduction
  18. Fong SY, Goh KJ, Shahrizaila N, Wong KT, Tan CT
    Muscle Nerve, 2016 08;54(2):244-8.
    PMID: 26790132 DOI: 10.1002/mus.25029
    INTRODUCTION: We investigated the effects of demographic and physical factors on nerve conduction studies (NCS) in a multi-ethnic Asian population.

    METHODS: One hundred sixty-six healthy Malaysians of different ethnicities (51.2% women, aged 21-77 years) underwent NCS using a standard protocol. Correlations of various factors to NCS were determined, and multiple linear regression analysis was used to develop predictive equations for each parameter.

    RESULTS: Age and ethnicity were the commonest independent factors influencing NCS followed by gender, height, weight, and body mass index. Increasing age predicted a reduction in lower limb motor and all sensory nerve action potential amplitudes and decrease in motor and sensory (except sural) conduction velocities. Ethnic Indians had slower motor and sensory conduction velocities in several nerves and also had differences in action potential amplitudes.

    CONCLUSIONS: NCS parameters in multi-ethnic Malaysians were influenced independently by various demographic and physical factors, including ethnicity. Muscle Nerve 54: 244-248, 2016.

    Matched MeSH terms: Neural Conduction/physiology*
  19. Razali SNO, Arumugam T, Yuki N, Rozalli FI, Goh KJ, Shahrizaila N
    Clin Neurophysiol, 2016 Feb;127(2):1652-1656.
    PMID: 26228791 DOI: 10.1016/j.clinph.2015.06.030
    OBJECTIVE: To assess the longitudinal changes of nerve ultrasound in Guillain-Barré syndrome (GBS) patients.

    METHODS: We prospectively recruited 17 GBS patients and 17 age and gender-matched controls. Serial studies of their nerve conduction parameters and nerve ultrasound, documenting the cross-sectional areas (CSA), were performed at admission and repeated at several time points throughout disease course.

    RESULTS: Serial nerve ultrasound revealed significantly enlarged CSA in median, ulnar and sural nerves within the first 3 weeks of disease onset. Longitudinal evaluation revealed an improvement in the nerve CSA with time, reaching significance in the ulnar and sural nerves after 12 weeks. There was no significant difference between the demyelinating and axonal subtypes. There was also no significant correlation found between nerve CSA and neurophysiological parameters or changes in nerve CSA and muscle strength.

    CONCLUSION: In GBS, serial studies of peripheral nerve ultrasound CSA are helpful to detect a gradual improvement in the nerve size.

    SIGNIFICANCE: Serial nerve ultrasound studies could serve as a useful tool in demonstrating nerve recovery in GBS.

    Matched MeSH terms: Neural Conduction/physiology*
  20. Radhika S, Lee YL, Low SF, Fazalina MF, Sharifah Majedah IA, Suraya A, et al.
    Med J Malaysia, 2015 Jun;70(3):158-61.
    PMID: 26248778 MyJurnal
    AIM: This study was conducted to measure the cross sectional area (CSA) of the ulnar nerve (UN) in the cubital tunnel and to evaluate the role of high-resolution ultrasonography in the diagnosis of ulnar nerve neuropathy (UNN).

    MATERIALS AND METHODS: This was a cross sectional study with 64 arms from 32 patients (34 neuropathic, 30 nonneuropathic). Diagnosis was confirmed by nerve conduction study and electromyography. The ulnar nerves were evaluated with 15MHz small footprint linear array transducer. The ulnar nerve CSA was measured at three levels with arm extended: at medial epicondyle (ME), 5cm proximal and 5cm distal to ME. Results from the neuropathic and nonneuropathic arms were compared. Independent T-tests and Pearson correlation tests were used. P value of less than 0.05 was considered significant.

    RESULTS: Mean CSA values for the UN at levels 5cm proximal to ME, ME and 5cm distal to ME were 0.055, 0.109, 0.045 cm(2) respectively in the neuropathic group and 0.049, 0.075, 0.042 cm2 respectively in the non-neuropathic group. The CSA of the UN at the ME level was significantly larger in the neuropathic group, with p value of 0.005. However, there was no statistical difference between the groups at 5cm proximal and distal to the ME, with p values of 0.10 and 0.35 respectively.

    CONCLUSION: There is significant difference in CSA values of the UN at ME between the neuropathic and non-neuropathic groups with mean CSA value above the predetermined 0.10cm(2) cut-off point. High-resolution ultrasonography is therefore useful to diagnose and follow up cases of elbow UNN.

    Matched MeSH terms: Neural Conduction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links