Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Nipah Virus/genetics
  2. Lo MK, Nichol ST, Spiropoulou CF
    Antiviral Res, 2014 Jun;106:53-60.
    PMID: 24680955 DOI: 10.1016/j.antiviral.2014.03.011
    Nipah virus (NiV) outbreaks have occurred in Malaysia, India, and Bangladesh, and the virus continues to cause annual outbreaks of fatal human encephalitis in Bangladesh due to spillover from its bat host reservoir. Due to its high pathogenicity, its potential use for bio/agro-terrorism, and to the current lack of approved therapeutics, NiV is designated as an overlap select agent requiring biosafety level-4 containment. Although the development of therapeutic monoclonal antibodies and soluble protein subunit vaccines have shown great promise, the paucity of effective antiviral drugs against NiV merits further exploration of compound libraries using rapid quantitative antiviral assays. As a proof-of-concept study, we evaluated the use of fluorescent and luminescent reporter NiVs for antiviral screening. We constructed and rescued NiVs expressing either Renilla luciferase or green fluorescent protein, and characterized their reporter signal kinetics in different cell types as well as in the presence of several inhibitors. The 50% effective concentrations (EC50s) derived for inhibitors against both reporter viruses are within range of EC50s derived from virus yield-based dose-response assays against wild-type NiV (within 1Log10), thus demonstrating that both reporter NiVs can serve as robust antiviral screening tools. Utilizing these live NiV-based reporter assays requires modest instrumentation, and circumvents the time and labor-intensive steps associated with cytopathic effect or viral antigen-based assays. These reporter NiVs will not only facilitate antiviral screening, but also the study of host cell components that influence the virus life cycle.
    Matched MeSH terms: Nipah Virus/genetics
  3. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
    Matched MeSH terms: Nipah Virus/genetics
  4. Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, et al.
    Emerg Infect Dis, 2010 Dec;16(12):1990-3.
    PMID: 21122240 DOI: 10.3201/eid1612.091790
    We isolated and characterized Nipah virus (NiV) from Pteropus vampyrus bats, the putative reservoir for the 1998 outbreak in Malaysia, and provide evidence of viral recrudescence. This isolate is monophyletic with previous NiVs in combined analysis, and the nucleocapsid gene phylogeny species.
    Matched MeSH terms: Nipah Virus/genetics
  5. Pulliam JR, Field HE, Olival KJ, Henipavirus Ecology Research Group
    Emerg Infect Dis, 2005 Dec;11(12):1978-9; author reply 1979.
    PMID: 16485499
    Matched MeSH terms: Nipah Virus/genetics*
  6. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, et al.
    Emerg Infect Dis, 2005 Oct;11(10):1594-7.
    PMID: 16318702
    Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks.
    Matched MeSH terms: Nipah Virus/genetics*
  7. AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z
    Emerg Infect Dis, 2004 Dec;10(12):2228-30.
    PMID: 15663869
    Nipah viruses from pigs from a Malaysian 1998 outbreak were isolated and sequenced. At least two different Nipah virus strains, including a previously unreported strain, were identified. The findings highlight the possibility that the Malaysia outbreaks had two origins of Nipah virus infections.
    Matched MeSH terms: Nipah Virus/genetics*
  8. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, et al.
    Emerg Infect Dis, 2006 Feb;12(2):235-40.
    PMID: 16494748
    During January and February 2001, an outbreak of febrile illness associated with altered sensorium was observed in Siliguri, West Bengal, India. Laboratory investigations at the time of the outbreak did not identify an infectious agent. Because Siliguri is in close proximity to Bangladesh, where outbreaks of Nipah virus (NiV) infection were recently described, clinical material obtained during the Siliguri outbreak was retrospectively analyzed for evidence of NiV infection. NiV-specific immunoglobulin M (IgM) and IgG antibodies were detected in 9 of 18 patients. Reverse transcription-polymerase chain reaction (RT-PCR) assays detected RNA from NiV in urine samples from 5 patients. Sequence analysis confirmed that the PCR products were derived from NiV RNA and suggested that the NiV from Siliguri was more closely related to NiV isolates from Bangladesh than to NiV isolates from Malaysia. NiV infection has not been previously detected in India.
    Matched MeSH terms: Nipah Virus/genetics
  9. Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES, Hossain MJ, et al.
    Emerg Infect Dis, 2012 Feb;18(2):248-55.
    PMID: 22304936 DOI: 10.3201/eid1802.111492
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes fatal encephalitis in humans. The initial outbreak of NiV infection occurred in Malaysia and Singapore in 1998-1999; relatively small, sporadic outbreaks among humans have occurred in Bangladesh since 2001. We characterized the complete genomic sequences of identical NiV isolates from 2 patients in 2008 and partial genomic sequences of throat swab samples from 3 patients in 2010, all from Bangladesh. All sequences from patients in Bangladesh comprised a distinct genetic group. However, the detection of 3 genetically distinct sequences from patients in the districts of Faridpur and Gopalganj indicated multiple co-circulating lineages in a localized region over a short time (January-March 2010). Sequence comparisons between the open reading frames of all available NiV genes led us to propose a standardized protocol for genotyping NiV; this protcol provides a simple and accurate way to classify current and future NiV sequences.
    Matched MeSH terms: Nipah Virus/genetics*
  10. Gaudino M, Aurine N, Dumont C, Fouret J, Ferren M, Mathieu C, et al.
    Emerg Infect Dis, 2020 01;26(1):104-113.
    PMID: 31855143 DOI: 10.3201/eid2601.191284
    We conducted an in-depth characterization of the Nipah virus (NiV) isolate previously obtained from a Pteropus lylei bat in Cambodia in 2003 (CSUR381). We performed full-genome sequencing and phylogenetic analyses and confirmed CSUR381 is part of the NiV-Malaysia genotype. In vitro studies revealed similar cell permissiveness and replication of CSUR381 (compared with 2 other NiV isolates) in both bat and human cell lines. Sequence alignments indicated conservation of the ephrin-B2 and ephrin-B3 receptor binding sites, the glycosylation site on the G attachment protein, as well as the editing site in phosphoprotein, suggesting production of nonstructural proteins V and W, known to counteract the host innate immunity. In the hamster animal model, CSUR381 induced lethal infections. Altogether, these data suggest that the Cambodia bat-derived NiV isolate has high pathogenic potential and, thus, provide insight for further studies and better risk assessment for future NiV outbreaks in Southeast Asia.
    Matched MeSH terms: Nipah Virus/genetics
  11. Shi J, Sun J, Hu N, Hu Y
    Infect Genet Evol, 2020 11;85:104442.
    PMID: 32622923 DOI: 10.1016/j.meegid.2020.104442
    Little is known about the genetic features of Nipah virus (NiV) associated with virulence and transmission. Herein, phylogenetic and genetic analyses for all available NiV strains revealed sequence variations between the two genetic lineages of NiV with pathogenic differences, as well as among different strains within Bangladesh lineage. A total of 143 conserved amino acid differences, distributed among viral nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F) and glycoprotein (G), were revealed. Structural modeling revealed one key substitution (S3554N) in the viral G protein that might mediate a 12-amino-acid structural change from a loop into a β sheet. Multiple key amino acids substitutions in viral G protein were observed, which may alter viral fitness and transmissibility from bats to humans.
    Matched MeSH terms: Nipah Virus/genetics*
  12. Rahman MZ, Islam MM, Hossain ME, Rahman MM, Islam A, Siddika A, et al.
    Int J Infect Dis, 2021 Jan;102:144-151.
    PMID: 33129964 DOI: 10.1016/j.ijid.2020.10.041
    BACKGROUND: Nipah virus (NiV) infection, often fatal in humans, is primarily transmitted in Bangladesh through the consumption of date palm sap contaminated by Pteropus bats. Person-to-person transmission is also common and increases the concern of large outbreaks. This study aimed to characterize the molecular epidemiology, phylogenetic relationship, and the evolution of the nucleocapsid gene (N gene) of NiV.

    METHODS: We conducted molecular detection, genetic characterization, and Bayesian time-scale evolution analyses of NiV using pooled Pteropid bat roost urine samples from an outbreak area in 2012 and archived RNA samples from NiV case patients identified during 2012-2018 in Bangladesh.

    RESULTS: NiV-RNA was detected in 19% (38/456) of bat roost urine samples and among them; nine N gene sequences were recovered. We also retrieved sequences from 53% (21 out of 39) of archived RNA samples from patients. Phylogenetic analysis revealed that all Bangladeshi strains belonged to NiV-BD genotype and had an evolutionary rate of 4.64 × 10-4 substitutions/site/year. The analyses suggested that the strains of NiV-BD genotype diverged during 1995 and formed two sublineages.

    CONCLUSION: This analysis provides further evidence that the NiV strains of the Malaysian and Bangladesh genotypes diverged recently and continue to evolve. More extensive surveillance of NiV in bats and human will be helpful to explore strain diversity and virulence potential to infect humans through direct or person-to-person virus transmission.

    Matched MeSH terms: Nipah Virus/genetics*
  13. Eshaghi M, Tan WS, Chin WK, Yusoff K
    J Biotechnol, 2005 Mar 30;116(3):221-6.
    PMID: 15707682
    The glycoprotein (G) of Nipah virus (NiV) is important for virus infectivity and induction of the protective immunity. In this study, the extra-cellular domain of NiV G protein was fused with hexahistidine residues at its N-terminal end and expressed in Escherichia coli. The expression under transcriptional regulation of T7 promoter yielded insoluble protein aggregates in the form of inclusion bodies. The inclusion bodies were solubilized with 8 M urea and the protein was purified to homogeneity under denaturing conditions using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The denatured protein was renatured by gradual removal of the urea. Light scattering analysis of the purified protein showed primarily monodispersity. The purified protein showed significant reactivity with the antibodies present in the sera of NiV-infected swine, as demonstrated in Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Taken together, the data indicate the potential usefulness of the purified G protein for structural or functional studies and the development of immunoassay for detection of the NiV antibodies.
    Matched MeSH terms: Nipah Virus/genetics*
  14. Chong FC, Tan WS, Biak DR, Ling TC, Tey BT
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 May 15;877(14-15):1561-7.
    PMID: 19395325 DOI: 10.1016/j.jchromb.2009.03.048
    Nucleocapsid (N) protein of Nipah virus (NiV) is a potential serological marker used in the diagnosis of NiV infections. In this study, a rapid and efficient purification system, HisTrap 6 Fast Flow packed bed column was applied to purify recombinant histidine-tagged N protein of NiV from clarified feedstock. The optimizations of binding and elution conditions of N protein of NiV onto and from Nickel Sepharose 6 Fast Flow were investigated. The optimal binding was achieved at pH 7.5, superficial velocity of 1.25 cm/min. The bound N protein was successfully recovered by a stepwise elution with different concentration of imidazole (50, 150, 300 and 500 mM). The N protein of NiV was captured and eluted from an inlet N protein concentration of 0.4 mg/ml in a scale-up immobilized metal affinity chromatography (IMAC) packed bed column of Nickel Sepharose 6 Fast Flow with the optimized condition obtained from the method scouting. The purification of histidine-tagged N protein using IMAC packed bed column has resulted a 68.3% yield and a purification factor of 7.94.
    Matched MeSH terms: Nipah Virus/genetics*
  15. Ang BSP, Lim TCC, Wang L
    J Clin Microbiol, 2018 06;56(6).
    PMID: 29643201 DOI: 10.1128/JCM.01875-17
    Nipah virus, a paramyxovirus related to Hendra virus, first emerged in Malaysia in 1998. Clinical presentation ranges from asymptomatic infection to fatal encephalitis. Malaysia has had no more cases since 1999, but outbreaks continue to occur in Bangladesh and India. In the Malaysia-Singapore outbreak, transmission occurred primarily through contact with pigs, whereas in Bangladesh and India, it is associated with ingestion of contaminated date palm sap and human-to-human transmission. Bats are the main reservoir for this virus, which can cause disease in humans and animals. There are currently no effective therapeutics, and supportive care and prevention are the mainstays of management.
    Matched MeSH terms: Nipah Virus/genetics
  16. Eshaghi M, Tan WS, Ong ST, Yusoff K
    J Clin Microbiol, 2005 Jul;43(7):3172-7.
    PMID: 16000431
    The nucleocapsid (N) protein of Nipah virus (NiV) is a major constituent of the viral proteins which play a role in encapsidation, regulating the transcription and replication of the viral genome. To investigate the use of a fusion system to aid the purification of the recombinant N protein for structural studies and potential use as a diagnostic reagent, the NiV N gene was cloned into the pFastBacHT vector and the His-tagged fusion protein was expressed in Sf9 insect cells by recombinant baculovirus. Western blot analysis of the recombinant fusion protein with anti-NiV antibodies produced a band of approximately 62 kDa. A time course study showed that the highest level of expression was achieved after 3 days of incubation. Electron microscopic analysis of the NiV recombinant N fusion protein purified on a nickel-nitrilotriacetic acid resin column revealed different types of structures, including spherical, ring-like, and herringbone-like particles. The light-scattering measurements of the recombinant N protein also confirmed the polydispersity of the sample with hyrdrodynamic radii of small and large types. The optical density spectra of the purified recombinant fusion protein revealed a high A(260)/A(280) ratio, indicating the presence of nucleic acids. Western blotting and enzyme-linked immunosorbent assay results showed that the recombinant N protein exhibited the antigenic sites and conformation necessary for specific antigen-antibody recognition.
    Matched MeSH terms: Nipah Virus/genetics
  17. Chang LY, Ali AR, Hassan SS, AbuBakar S
    J Med Virol, 2006 Aug;78(8):1105-12.
    PMID: 16789019
    Nipah virus infection of porcine stable kidney cells (PS), human neuronal cells (SK-N-MC), human lung fibroblasts cells (MRC-5), and human monocytes (THP-1) were examined. Rapid progression of cytopathic effects (CPE) and cell death were noted in PS cell cultures treated with Nipah virus, followed by MRC-5, SK-N-MC, and THP-1 cell cultures, in descending order of rapidity. Significant increase in the intracellular Nipah virus RNA occurred beginning at 24 hr PI in all the infected cells. Whereas, the extracellular release of Nipah virus RNA increased significantly beginning at 48 and 72 hr PI for the infected MRC-5 cells and PS cells, respectively. No significant release of extracellular Nipah virus RNA was detected from the Nipah virus-infected SK-N-MC and THP-1 cells. At its peak, approximately 6.6 log PFU/microl of extracellular Nipah virus RNA was released from the Nipah virus-infected PS cells, with at least a 100-fold less virus RNA was recorded in the Nipah virus-infected SK-N-MC and THP-1. Approximately 15.2% (+/-0.1%) of the released virus from the infected PS cell cultures was infectious in contrast to approximately 5.5% (+/-0.7%) from the infected SK-N-MC cells. The findings suggest that there are no differences in the capacity to support Nipah virus replication between pigs and humans in fully susceptible PS and MRC-5 cells. However, there are differences between these cells and human neuronal cells and monocytes in the ability to support Nipah virus replication and virus release.
    Matched MeSH terms: Nipah Virus/genetics*
  18. Lo Presti A, Cella E, Giovanetti M, Lai A, Angeletti S, Zehender G, et al.
    J Med Virol, 2016 Mar;88(3):380-8.
    PMID: 26252523 DOI: 10.1002/jmv.24345
    Nipah virus, member of the Paramyxoviridae family, is classified as a Biosafety Level-4 agent and category C priority pathogen. Nipah virus disease is endemic in south Asia and outbreaks have been reported in Malaysia, Singapore, India, and Bangladesh. Bats of the genus Pteropus appear to be the natural reservoir of this virus. The aim of this study was to investigate the genetic diversity of Nipah virus, to estimate the date of origin and the spread of the infection. The mean value of Nipah virus N gene evolutionary rate, was 6.5 × 10(-4) substitution/site/year (95% HPD: 2.3 × 10(-4)-1.18 × 10(-3)). The time-scaled phylogenetic analysis showed that the root of the tree originated in 1947 (95% HPD: 1888-1988) as the virus entered in south eastern Asiatic regions. The segregation of sequences in two main clades (I and II) indicating that Nipah virus had two different introductions: one in 1995 (95% HPD: 1985-2002) which correspond to clade I, and the other in 1985 (95% HPD: 1971-1996) which correspond to clade II. The phylogeographic reconstruction indicated that the epidemic followed two different routes spreading to the other locations. The trade of infected pigs may have played a role in the spread of the virus. Bats of the Pteropus genus, that are able to travel to long distances, may have contributed to the spread of the infection. Negatively selected sites, statistically supported, could reflect the stability of the viral N protein.
    Matched MeSH terms: Nipah Virus/genetics*
  19. Tan WS, Ong ST, Eshaghi M, Foo SS, Yusoff K
    J Med Virol, 2004 May;73(1):105-12.
    PMID: 15042656
    The nucleocapsid (N) protein of Nipah virus (NiV) can be produced in three Escherichia coli strains [TOP10, BL21(DE3) and SG935] under the control of trc promoter. However, most of the product existed in the form of insoluble inclusion bodies. There was no improvement in the solubility of the product when this protein was placed under the control of T7 promoter. However, the solubility of the N protein was significantly improved by lowering the growth temperature of E. coli BL21(DE3) cell cultures. Solubility analysis of N- and C-terminally deleted mutants revealed that the full-length N protein has the highest solubility. The soluble N protein could be purified efficiently by sucrose gradient centrifugation and nickel affinity chromatography. Electron microscopic analysis of the purified product revealed that the N protein assembled into herringbone-like particles of different lengths. The C-terminal end of the N protein contains the major antigenic region when probed with antisera from humans and pigs infected naturally.
    Matched MeSH terms: Nipah Virus/genetics
  20. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J Virol Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
    Matched MeSH terms: Nipah Virus/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links