Displaying all 15 publications

Abstract:
Sort:
  1. T Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, et al.
    Malar J, 2023 Feb 14;22(1):54.
    PMID: 36782162 DOI: 10.1186/s12936-023-04483-9
    BACKGROUND: The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials.

    METHODS: Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles.

    RESULTS: The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method.

    CONCLUSION: For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.

    Matched MeSH terms: Parasitemia/parasitology
  2. Ahmed AM, Pinheiro MM, Divis PC, Siner A, Zainudin R, Wong IT, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3086.
    PMID: 25121807 DOI: 10.1371/journal.pntd.0003086
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p =  <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region.
    Matched MeSH terms: Parasitemia/parasitology
  3. Norhayati M, Rohani AK, Hayati MIN, Halimah AS, Sharom MY, Zainah Abidin AH, et al.
    Med J Malaysia, 2001 Sep;56(3):271-4.
    PMID: 11732070
    A malaria survey was conducted to examine the presence of common clinical features of malaria in individuals living in an endemic area of malaria. The overall infection rate was 11.0% with 7.5% and 3.5% infected with Plasmodium vivax and Plasmodium falciparum respectively. The mean parasitaemia level of both species was 2905.9 parasites/microliter blood, with the mean parasitaemia level of P. vivax and P. falciparum at 682.7 parasites/microliter blood and 6981.7 parasites/microliter blood respectively. The infection rates were higher in the younger age group. Hepatomegaly, hepatosplenomegaly and clinical anaemia were significantly associated with malaria. None of the patients were febrile. In conclusion, in low endemic areas, the presence of clinical anaemia, hepatomegaly and hepatosplenomegaly in afebrile individuals could be considered as useful criteria for the presence of asymptomatic parasitaemia. It is important to carry out laboratory diagnostic investigations, to ensure all the asymptomatic parasitaemia which act as reservoirs are detected and treated.
    Matched MeSH terms: Parasitemia/parasitology
  4. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA
    Am J Trop Med Hyg, 1999 Apr;60(4):687-92.
    PMID: 10348249
    A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
    Matched MeSH terms: Parasitemia/parasitology
  5. Lee WC, Chin PW, Lau YL, Chin LC, Fong MY, Yap CJ, et al.
    Malar J, 2013;12:88.
    PMID: 23496970 DOI: 10.1186/1475-2875-12-88
    Plasmodium knowlesi is a potentially life-threatening zoonotic malaria parasite due to its relatively short erythrocytic cycle. Microscopic identification of P. knowlesi is difficult, with "compacted parasite cytoplasm" being one of the important identifying keys. This report is about a case of hyperparasitaemic human P. knowlesi infection (27% parasitaemia) with atypical amoeboid morphology. A peninsular Malaysian was admitted to the hospital with malaria. He suffered anaemia and acute kidney function impairment. Microscopic examination, assisted by nested PCR and sequencing confirmed as P. knowlesi infection. With anti-malarial treatment and several medical interventions, patient survived and recovered. One-month medical follow-up was performed after recovery and no recrudescence was noted. This case report highlights the extreme hyperparasitaemic setting, the atypical morphology of P. knowlesi in the patient's erythrocytes, as well as the medical interventions involved in this successfully treated case.
    Matched MeSH terms: Parasitemia/parasitology*
  6. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
    Matched MeSH terms: Parasitemia/parasitology
  7. Barber BE, Grigg MJ, William T, Piera KA, Boyle MJ, Yeo TW, et al.
    J Infect Dis, 2017 06 15;215(12):1908-1917.
    PMID: 28863470 DOI: 10.1093/infdis/jix193
    Background: In populations pauci-immune to malaria, risk of severe malaria increases with age. This is particularly apparent in Plasmodium knowlesi malaria. However, pathophysiological mechanisms underlying knowlesi malaria, and of the age-related increase in risk of severe malaria in general, are poorly understood.

    Methods: In Malaysian patients aged ≥12 years with severe (n = 47) and nonsevere (n = 99) knowlesi malaria, severe (n = 21) and nonsevere (n = 109) falciparum malaria, and healthy controls (n = 50), we measured parasite biomass, systemic inflammation (interleukin 6 [IL-6]), endothelial activation (angiopoietin-2), and microvascular function, and evaluated the effects of age.

    Results: Plasmodium knowlesi parasitemia correlated with age (Spearman's correlation coefficient [rs] = 0.36; P < .0001). In knowlesi malaria, IL-6, angiopoietin-2, and microvascular dysfunction were increased in severe compared to nonsevere disease, and all correlated with age, independent of parasitemia. In falciparum malaria, angiopoietin-2 increased with age, independent of parasite biomass (histidine-rich protein 2 [HRP2]). Independent risk factors for severe malaria included parasitemia and angiopoietin-2 in knowlesi malaria, and HRP2, angiopoietin-2, and microvascular dysfunction in falciparum malaria.

    Conclusions: Parasite biomass, endothelial activation, and microvascular dysfunction are associated with severe disease in knowlesi malaria and likely contribute to pathogenesis. The association of each of these processes with aging may account for the greater severity of malaria observed in older adults in low-endemic regions.

    Matched MeSH terms: Parasitemia/parasitology*
  8. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Parasitemia/parasitology
  9. Anderios F, Noorrain A, Vythilingam I
    Exp Parasitol, 2010 Feb;124(2):181-9.
    PMID: 19765587 DOI: 10.1016/j.exppara.2009.09.009
    Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per microL of blood for asexual stage and 88-264 parasites per microL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.
    Matched MeSH terms: Parasitemia/parasitology
  10. Sahimin N, Alias SN, Woh PY, Edah MA, Mohd Zain SN
    Trop Biomed, 2014 Sep;31(3):422-31.
    PMID: 25382468 MyJurnal
    The quantitative buffy coat (QBC) technique and conventional Giemsa thin blood smear was compared to determine the sensitivity and specificity of the technique in detecting blood parasitic infection of the rodent populations from four urban cities in Peninsular Malaysia. A total of 432 blood samples from four rat species (Rattus norvegicus, Rattus rattus diardii, Rattus exulans and Rattus argentiventer) were screened using both techniques and successfully detected two blood protozoan species (Trypanosoma lewisi and Plasmodium sp.) with Trypanosoma lewisi predominantly infecting the population. Results showed that Giemsa-stained thin film (GTF) was the better detection method on blood parasitemia (46.7%) compared to Quantitative Buffy Coat method (38.9%) with overall detection technique sensitivity and specificity at 83.2% and 74.8% respectively. The sensitivity in detection of Trypanosoma lewisi was 84.4% with value slightly lower for Plasmodium sp. infections at 76.6%. Statistical analysis proved that GTF technique was significantly more sensitive in the detection of blood protozoan infections in the rodent population compared to QBC (p<0.05).
    Matched MeSH terms: Parasitemia/parasitology
  11. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Parasitemia/parasitology
  12. Gurpreet K
    Trop Biomed, 2009 Apr;26(1):57-66.
    PMID: 19696728 MyJurnal
    An epidemiological cross-sectional study was undertaken to determine the endemicity of malaria among the Orang Asli population of Raub, Pahang. Malaria endemicity was measured in terms of the prevalence of parasitaemia and splenomegaly. A total of 520 Orang Asli were examined. The point prevalence of malaria was 24.2% (95% CI 20.7-25.1), with Plasmodium falciparum (67.5%) being the predominant species. Children < 12 years were at least 3.7 times more likely to be parasitaemic compared to those older. The prevalence of malaria among children 2-<10 years was 38.1% (95% CI 31.6-50.0). Spleen rate among children 2-<10 years old was 22.3% (95% CI 17.1-28.3). The average enlarged spleen size was 1.2. These findings classify the study area as being mesoendemic. Malaria control activities among the Orang Asli should focus on protecting vulnerable subgroups like young children. Measuring the level of malaria endemicity at regular intervals is fundamental in evaluating the effectiveness of malaria control programs.
    Matched MeSH terms: Parasitemia/parasitology
  13. Chandrawathani P, Nurulaini R, Adnan M, Premalaatha B, Khadijah S, Jamnah O, et al.
    Trop Biomed, 2009 Apr;26(1):11-5.
    PMID: 19696722 MyJurnal
    This paper reports the occurrence of helminth and protozoan infections on small ruminants from eight farms situated in Kinta and Perak Tengah district, Perak. The results of this survey indicate that helminthiasis and coccidiosis is rampant in sheep and goat farms. Several anthelmintics have been used for the control of helminths. The smallholders depended on health and extention services from the State Veterinary Department. This survey is part of an ongoing programme by the Department of Veterinary Services to upgrade services and report the current status of parasitic diseases in the state.
    Matched MeSH terms: Parasitemia/parasitology
  14. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

    Matched MeSH terms: Parasitemia/parasitology
  15. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Parasitemia/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links