Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Sheikh-Omar AR
    Res Vet Sci, 1999 Oct;67(2):163-70.
    PMID: 10502487
    Twenty-four 8 to 9 week-old Pasteurella multocida -free rabbits were divided into three equal groups, the first group was pretreated with hydrocortisone and inoculated intranasally with pasteurella multocida serotype A:3. The second group was inoculated intranasally with P. multocida without hydrocortisone treatment. The third group was inoculated with phosphate buffered saline only and used as a control group. Pasteurella multocida was isolated from the nasal cavity of all infected rabbits in group 1 and 2 and from the trachea of seven rabbits in group 1 and five rabbits in group 2. This study was conducted to observe the ultrastructural changes of the upper respiratory tract of hydrocortisone treated and non-treated rabbits infected with P. multocida serotype A:3. The ultrastructural changes detected in infected rabbits were ciliary destruction and deciliation of the ciliated epithelial cells, cellular swelling, goblet cell hyperplasia and endothelial cell damage. Pasteurella multocida was observed attached to the degenerated cilia, microvilli and mucus. Pasteurella multocida infection was associated with inflammatory responses, which may have caused tissue damage. It is possible that hydrocortisone modulates the severity of infection as an immune suppressor and an inhibitor of goblet cell secretion.
    Matched MeSH terms: Pasteurella multocida
  2. Mohd Yasin IS, Mohd Yusoff S, Mohd ZS, Abd Wahid Mohd E
    Trop Anim Health Prod, 2011 Jan;43(1):179-87.
    PMID: 20697957 DOI: 10.1007/s11250-010-9672-5
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the fimbrial protein of Pasteurella multocida B:2 following intranasal vaccination against hemorrhagic septicemia in goats. Goats were vaccinated intranasal with 10(6) CFU/mL of the recombinant vaccine (vaccinated group) and 10(6) CFU/mL of pET32/LIC vector without fimbrial protein (control group). All three groups were kept separated before all goats in the three groups were challenged with 10(9) CFU/mL of live pathogenic P. multocida B:2. During the course of study, both serum and lung lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay. It was found that goats immunized with the inactivated recombinant vaccine developed a strong and significantly (p 
    Matched MeSH terms: Pasteurella multocida/immunology*
  3. Al-Haddawi MH, Jasni S, Israf DA, Zamri-Saad M, Mutalib AR, Sheikh-Omar AR
    Res Vet Sci, 2001 Jun;70(3):191-7.
    PMID: 11676614
    Sixteen 8- to 9-week-old Pasteurella multocida-free New Zealand White rabbits were divided into two equal groups. The first group was inoculated intranasally with P multocida serotype D:1 strain and the second group that was inoculated with phosphate-buffered saline (PBS) only was used as a control group. Pasteurella multocida was isolated from the nasal cavity of all infected rabbits in group 1 and from tracheal swabs of seven rabbits in this group. Four rabbits in group 1 died with clinical signs of septicaemia, two rabbits had mucopurulent nasal discharge and pneumonic lesions and the other two did not show any clinical signs or gross lesions. The ultrastructural changes detected were deciliation or clumping of cilia of ciliated epithelium, cellular swelling, vacuolation and sloughing. The subepithelial capillaries showed congestion, intravascular fibrin deposition, platelets aggregation and endothelial injury. Pasteurella multocida was observed attached to the injured endothelial cells. Heterophils, mast cells, vacuolated monocytes and macrophages infiltrated the lamina propria and between the degenerated epithelial cells.
    Matched MeSH terms: Pasteurella multocida/growth & development*
  4. Kang TL, Velappan RD, Kabir N, Mohamad J, Rashid NN, Ismail S
    Microb Pathog, 2019 Mar;128:90-96.
    PMID: 30584901 DOI: 10.1016/j.micpath.2018.12.042
    Haemorrhagic septicaemia (HS) is a well-known high fatality septicaemic disease happening among bovines. The disease is caused by the Pasteurella multocida serotype B:2 bacteria. P. multocida B:2 has high mortality and morbidity rates and is spread through the intranasal and oral routes in bovines. In this study, our aim was to investigate the efficacy of the recombinant protein vaccine, ABA392/pET30a via intranasal inoculation by targeting the mucosal immunity. The constructed recombinant protein vaccine ABA392/pET30a was subjected to an animal study using Sprague Dawley rats. The study was divided into two parts: active and passive immunization studies. Both studies were carried out through the determination of immunogenicity (using Total White Blood Cell (TWBC) Count with Indirect ELISA) and histopathogenicity, analyzing (Bronchus Associated Lymphoid Tissue (BALT) formation) in lungs. As a result, the IgA and IgG development of both tested groups: group 1 (50μg/mL protein vaccine) and group 2 (100μg/mL protein vaccine) showed equivalent with the positive control group 4 (formalin-killed P. multocida B:2). However, there was a significant difference when compared with the negative control group 3 (normal saline). These results demonstrate that both the protein vaccine at the concentration 50μg/mL and 100μg/mL have the same efficacy as the commercially available positive control vaccine. From the studies, higher concentration of protein vaccine at 100μg/mL showed higher development of both IgA and IgG compared to 50μg/mL protein vaccine. Higher and rapid development of IgA compared to IgG showed that mucosal immunity has been induced through the intranasal administration of the protein vaccine. In addition, leucocytosis was observed at each dose of vaccination showed that the protein vaccine is capable to induce the immune responses of the host. Histopathogenicity studies of the vaccinated groups showed more BALT formation and no severe lesions after challenge compared to the negative control group. Besides, no inflammatory onsite or anaphylactic responses were observed after the intranasal inoculation which proved to be safer and provided longer lasting immunity. Therefore, recombinant protein vaccine ABA392/pET30a could be a potential candidate for intranasal administration which can provoke mucosal immunity against HS disease.
    Matched MeSH terms: Pasteurella multocida
  5. Shafarin MS, Zamri-Saad M, Khairani BS, Saharee AA
    J Comp Pathol, 2009 Feb-Apr;140(2-3):194-7.
    PMID: 19110260 DOI: 10.1016/j.jcpa.2008.10.005
    Clinical and pathological changes are described in groups of five goats pretreated with dexamethasone and then infected with a large dose of Pasteurella multocida B:2 (the cause of haemorrhagic septicaemia) by the intratracheal, subcutaneous or intranasal route (groups A, B and C, respectively). In group A, two goats died (on day 1 and 4 post-inoculation); in group B three died (days 2, 5 and 14); and in group C one died (day 20). The infecting organism was recovered from the four goats that died within < or =5 days. The major pulmonary lesions included acute pneumonia, congestion, oedema and hydrothorax. Subcutaneous oedema of the lower jaw and brisket, typically seen in cattle and buffalo, was absent in goats.
    Matched MeSH terms: Pasteurella multocida
  6. Rita DV, Swee KCW, Shamini C, Kang TL, Nurshamimi NR, Hussin AR, et al.
    Trop Biomed, 2018 Dec 01;35(4):1075-1086.
    PMID: 33601854
    Haemorrhagic septicaemia (HS) is a major disease in cattle and buffaloes, caused by certain serotypes of Pasteurella multocida, mainly B and E serotypes. Frequent HS outbreak has a major impact in many Asian countries, including Malaysia, where farmers encounter economic loss due to low milk production as well as death of their livestock. There are four types of vaccines available; broth bacterins, alum precipitated vaccine, aluminium hydroxide gel vaccine and oil adjuvant vaccine (OAV), but these vaccines can only provide short term immunity and therefore need to be administered annually. Hence, the development of a protein vaccine using recombinant antigen can be a potential candidate for the production of HS vaccine that would give longer immunity. We have successfully cloned the ABA392 gene fragment into a protein expression vector, pET-30a. The protein was expressed from our ABA392/pET30a clone and the immunogenicity of the protein has been tested on rats. This vaccine was able to trigger an immune response and therefore has the potential to be tested as suitable vaccine candidate in future studies. It is envisaged that this subunit vaccine will make a significant contribution in the management of HS among livestock in future.
    Matched MeSH terms: Pasteurella multocida
  7. Fatin Hanisah, F., Umi Kalthum, M. N., Rona Asnida, N., Jemaima, C. H.
    MyJurnal
    A 55-year-old healthy lady with history of regular contact lens (CL) use presented with 10 days history of
    progressive left eye blurring of vision, redness and pain. There was good CL hygiene practiced with no history of
    swimming, trauma or contact with domestic pets. Left eye vision was hand movement and right eye was 1/60,
    pinhole 6/18. On the left eye, there was a central, oval-shaped corneal infiltrate with an overlying large epithelial
    defect and stromal oedema, with significant anterior chamber cells and fibrin. B-mode ultrasound showed no vitritis.
    Intensive topical benzylpenicillin 10000iu/ml and topical gentamycin 1.4% hourly, homatropine 2% three times
    daily, oral doxycycline and oral ascorbic acid were started. The gram stain results showed gram positive cocci
    growth. Her ulcer improved with the treatment and preservative-free dexamethasone 0.1% once daily was
    commenced to reduce inflammation and scarring. Interestingly, culture was reported as Pasteurella maltocida, a
    gram negative bacilli sensitive to penicillin, and so treatment was continued until the ulcer completely healed. She
    had central corneal scarring with best corrected vision of 6/24 in the left eye but was not keen on further surgery to
    improve her vision. Although it has not been previously reported, Pasteurella multocida can cause CL related
    corneal ulcer with severe anterior chamber inflammation. This diagnosis should be considered even if there is trivial
    contact or no history of exposure to domestic animals.
    Matched MeSH terms: Pasteurella multocida
  8. Shafarin MS, Zamri-Saad M, Khairani BS, Saharee AA
    Trop Anim Health Prod, 2008 Jun;40(5):335-40.
    PMID: 18509941
    This report describes the proliferation and transmission patterns of Pasteurella multocida B:2 among stressful goats, created through dexamethasone injections. Thirty seven clinically healthy adult goats were divided into three groups consisted of 15 goats in group A, 11 goats in group B and the remaining 11 in group C. At the start of the study, all goats of group A were exposed intranasally to 1.97 x 10(10) CFU/ml of live P multocida B:2. Dexamethasone was immediately administered intramuscularly for 3 consecutive days at a dosage rate of 1 mg/kg. The exposed goats were observed for signs of HS for a period of 1 month. At the end of the 1-month period, 11 goats from group B were introduced into and commingled with the surviving goats of group A before all goats from both groups were immediately injected intramuscularly with dexamethasone for 3 consecutive days. The treatment with dexamethasone was then carried out at monthly interval throughout the 3-month study period. Goats of group C were kept separately as negative control. Three surviving goats from each group were killed at 2-week interval for a complete post-mortem examination. Two (13%) goats of group A were killed within 24 hours after intranasal exposure to P multocida B:2 while another two (13%) goats from the same group were killed on day 40, approximately 10 days after the second dexamethasone injection. All four goats showed signs and lesions typical of haemorrhagic septicaemia. Bacteraemia was detected in 3 goats of group A that were having rectal temperature higher than 41degrees C. The P. multocida B:2 isolation pattern was closely associated with dexamethasone injections when significantly (p < 0.05) higher rate of isolations from both groups were observed after each dexamethasone injection. Transmission of P multocida B:2 from goats of group A to group B was successful when P multocida B:2 was isolated from goats of group B for a period of 28 days. There was a strong correlation between dexamethasone injections, rate of bacterial isolation and serum cortisol level. The IgG level showed an increasing trend 2 weeks after exposure to P multocida B:2 and remained high throughout the study period.
    Matched MeSH terms: Pasteurella multocida/growth & development*
  9. Muniandy N, Love DN, Mukkur TK
    Comp Immunol Microbiol Infect Dis, 1998 Oct;21(4):257-79.
    PMID: 9775357
    Purified lipopolysaccharide (LPS) of Pasteurella multocida type 6:B, while toxic at higher doses, was protective at lower dose levels against experimentally-induced pasteurellosis in mice. However, the observed protection was abrogated if such LPS was digested with proteinase K prior to use in immunisation. The O-antigen polysaccharide side-chain (OS) of LPS did not appear to contribute to the observed protection as judged by the fact that immunisation of mice with purified OS or OS-protein conjugates, all of which were nontoxic, failed to confer protection against challenge with homologous virulent organisms. This was despite generation of significant levels of OS-specific antibodies, predominantly either of the IgM or IgG isotypes, in immunised mice.
    Matched MeSH terms: Pasteurella multocida/immunology*
  10. Oslan SNH, Halim M, Ramle NA, Saad MZ, Tan JS, Kapri MR, et al.
    Cryobiology, 2017 12;79:1-8.
    PMID: 29037980 DOI: 10.1016/j.cryobiol.2017.10.004
    The efficacy of attenuated strain of gdhA derivative Pasteurella multocida B:2 mutant as a live vaccine to control haemorrhagic septicaemia (HS) disease in cattle and buffaloes has been demonstrated. In order to use P. multocida B:2 mutant as a commercial product, it is essential to optimise its formulation for high viability and stability of the live cells. The effectiveness of freeze-drying process using different protective agent formulations for improving cells viability was explored. Sugar and nitrogen compounds were used as protective agents in freeze-drying and the capability of these compounds in maintaining the viability of mutant P. multocida B:2 during subsequent storage was investigated. A complete loss in viability of freeze-dried mutant P. multocida B:2 was monthly observed until 6-12 months of storage at -30 °C, 4 °C and 27 °C when nitrogen compound or no protective agent was added. Trehalose and sucrose showed significantly high survival rate of 93-95% immediately after freeze-drying and the viability was retained during the subsequent storage at -30 °C and 4 °C. A smooth cell surface without any cell-wall damage was observed for the cells formulated with trehalose under scanning electron micrograph. This study presented a freeze-drying process generating a dried live attenuated vaccine formulation with high stability for commercial applications.
    Matched MeSH terms: Pasteurella multocida/immunology*
  11. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P 
    Matched MeSH terms: Pasteurella multocida/genetics; Pasteurella multocida/immunology*
  12. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Pasteurella multocida/genetics; Pasteurella multocida/immunology*
  13. Chandrasekaran S, Kennett L, Yeap PC, Muniandy N, Rani B, Mukkur TK
    Vet Microbiol, 1994 Aug 15;41(4):303-9.
    PMID: 7801530
    The relationship between the standard passive mouse protection test or serum antibody titres measured by indirect haemagglutination or enzyme-linked immunosorbent assays and active protection in buffaloes immunized with different types of haemorrhagic septicaemia bacterins was investigated. Groups of 2-3 buffaloes were immunized with the bacterins currently in use in Asia, viz., broth bacterin (BB), alum precipitated vaccine (APV) and oil adjuvant vaccine (OAV) either subcutaneously (BB, APV) or intramuscularly (OAV) and challenged subcutaneously with virulent organisms at different periods post-immunization. Although the passive mouse protection and indirect haemagglutination tests carried out with the pre-challenge sera from vaccinated buffaloes revealed no relationship with active protection in buffaloes, a relationship was observed between the ELISA antibody titres and protection. In contrast, a dose-response relationship was observed between the homologous active and passive mouse protection test.
    Matched MeSH terms: Pasteurella multocida/immunology
  14. Chung ELT, Abdullah FFJ, Marza AD, Saleh WMM, Ibrahim HH, Abba Y, et al.
    Microb Pathog, 2017 Jan;102:89-101.
    PMID: 27894962 DOI: 10.1016/j.micpath.2016.11.015
    The aim of this study was to investigate the clinico-pathology and haemato-biochemistry alterations in buffaloes inoculated with Pasteurella multocida type B:2 immunogen outer membrane protein via subcutaneous and oral routes. Nine buffalo heifers were divided equally into 3 treatment groups. Group 1 was inoculated orally with 10 mL of phosphate buffer saline (PBS); Group 2 and 3 were inoculated with 10 mL of outer membrane protein broth subcutaneously and orally respectively. Group 2 buffaloes showed typical haemorrhagic septicaemia clinical signs and were only able to survive for 72 h of the experiment. However, Group 3 buffaloes were able to survive throughout the stipulated time of 21 days of experiment. There were significant differences (p  0.05) in edema between groups except for the lung. This study was a proof that oral route infection of Pasteurella multocida type B:2 immunogen outer membrane protein can be used to stimulate host cell.
    Matched MeSH terms: Pasteurella multocida/immunology*
  15. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
    Matched MeSH terms: Pasteurella multocida
  16. Al-Haddawi MH, Jasni S, Son R, Mutalib AR, Bahaman AR, Zamri-Saad M, et al.
    J Gen Appl Microbiol, 1999 Dec;45(6):269-275.
    PMID: 12501355
    Forty isolates of Pasteurella multocida from healthy (17 isolates) and diseased (23 isolates) rabbits were assayed for the presence of plasmids in seeking to determine whether any correlation exists between the presence of plasmids and health status, sensitivity to antimicrobial agents, capsular and somatic type, and the anatomic site of isolation. Six isolates were found harboring plasmids. A similar ladder pattern ranging from 18 to 3 megadalton (Mda) were found in three isolates recovered from diseased rabbits. One band of molecular weight 6.6 Mda was shared by four of five (4/5) isolates from the diseased rabbits. No correlation was found between the presence of the common plasmids and serotype, resistance to antimicrobial agents, and anatomic sites from which the bacteria were cultured. Random amplification polymorphic DNA was applied to subtype all the isolates of P. multocida. Two single primers were tested for their abilities to generate individual fingerprints by using PCR. Primer 1 grouped the isolates into 7 profiles, and primer 2 grouped them into 15. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) results show the presence of a wide heterogeneity within P. multocida isolates. Therefore RAPD-PCR is an efficient technique to detect the DNA polymorphism and could be used to discriminate P. multocida of rabbit isolates together with serologic typing.
    Matched MeSH terms: Pasteurella multocida
  17. Zamri-Saad M, Ernie ZA, Sabri MY
    Trop Anim Health Prod, 2006 Oct-Nov;38(7-8):541-6.
    PMID: 17265769
    This study aimed to determine the effect of intranasal exposure to low doses of Pasteurella multocida B:2 on survival of goats challenged with high doses of the same organism. Eighteen goats were selected and divided into three groups. Goats of group 1 were exposed intranasally twice, with a two-week interval, to 7 x 10(6) cfu/ml of live P. multocida B:2. Goats of group 2 were not exposed to P. multocida B:2 but were kept together with the exposed group 1. Goats of group 3 remained as unexposed controls and were kept separated from the other two groups. Serum samples were collected at weekly intervals to determine the antibody levels. At week 5 post exposure, all goats were challenged subcutaneously with 3.7 x 10(10) cfu/ml of live P. multocida B:2. Following challenge exposure, 8 (67%) goats (4 goats from each of groups 1 and 2) were killed owing to haemorrhagic septicaemia. Four goats were killed peracutely within 48 h post challenge, while the other four goats were killed acutely between 2 and 4 days post challenge. None of the goats of group 3 were killed for haemorrhagic septicaemia. Goats of groups 1 and 2 showed significantly (p < 0.05) higher antibody levels following the first intranasal exposure to P. multocida B:2. However, only group 1 retained the significantly (p < 0.05) high antibody levels following a second intranasal exposure, and remained significantly (p < 0.05) higher than groups 2 and 3 at the time of challenge. P. multocida B:2 was successfully isolated from various organs of goats that were killed between 1 and 4 days post challenge.
    Matched MeSH terms: Pasteurella multocida/immunology*; Pasteurella multocida/pathogenicity*
  18. Jesse FF, Ibrahim HH, Abba Y, Chung EL, Marza AD, Mazlan M, et al.
    BMC Vet Res, 2017 Apr 05;13(1):88.
    PMID: 28381248 DOI: 10.1186/s12917-017-1010-y
    BACKGROUND: Hemorrhagic septicemia is a fatal disease of cattle and buffaloes caused by P. multocida. Although the pathogenesis of the bacteria has been well established in literature, there is a paucity of information on the possible role of the bacteria and its immunogens; lipopolysaccharide (LPS) and outer membrane proteins (OMPs) on the reproductive capacity of buffalo heifers.

    METHODS: In this study, twenty one healthy prepubertal female buffaloes aged 8 months were divided into seven groups of 3 buffaloes each (G1-G7). Group 1 (G1) served as the negative control group and were inoculated orally with 10 mL sterile Phosphate Buffer Saline (PBS), groups 2 (G2) and 3 (G3) were inoculated orally and subcutaneously with 10 mL of 10(12) colony forming unit (cfu) of P.multocida type B: 2, while groups 4 (G4) and 5 (G5) received 10 mL of bacterial LPS orally and intravenously, respectively. Lastly, groups 6 (G6) and 7 (G7) were orally and subcutaneously inoculated with 10 mL of bacterial OMPs. Whole blood was collected in EDTA vials at stipulated time points (0, 2, 4, 6, 8, 10, 12, 24, 36, 48, 72, 120, 168, 216, 264, 312, 360, 408, 456 and 504 h), while tissue sections of the pituitary glands were collected and transported to the histopathology laboratory in 10% buffered formalin for processing and Hematoxylin and eosin staining. Plasma levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone (PG), estradiol (EST) and gonadotrophin releasing hormone (GnRH) were determined.

    RESULTS: The histopathological lesions observed in the pituitary gland included hemorrhage, congestion, inflammatory cell infiltration, hydropic degeneration, necrosis and edema. These changes were higher (p 

    Matched MeSH terms: Pasteurella multocida/immunology; Pasteurella multocida/pathogenicity*
  19. Chelliah S, Velappan RD, Lim KT, Swee CWK, Nor Rashid N, Rothan HA, et al.
    Mol Biotechnol, 2020 May;62(5):289-296.
    PMID: 32185600 DOI: 10.1007/s12033-020-00244-0
    Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.
    Matched MeSH terms: Pasteurella multocida/genetics*; Pasteurella multocida/immunology
  20. Shafarin MS, Zamri-Saad M, Jamil SM, Siti Khairani B, Saharee AA
    PMID: 17381677
    Haemorrhagic septicaemia (HS) is an acute disease of cattle and buffaloes caused by Pasteurella multocida 6:B. Outbreaks of the disease have been closely associated with carrier animals that transmit the organism to susceptible animals during stressful condition. This study was conducted to determine whether goats exposed intranasally to P. multocida 6:B can transmit the organism to contact goats. Thirty-six healthy local Katjang goats were divided into four groups and goats of groups 1 and 3 were each inoculated intranasally with a 1-ml inoculum that contained 1 x 10(9) CFU/ml of live P. multocida 6:B. Following the exposure, all goats of groups 3 and 4 were injected with dexamethasone at the rate of 1 mg/kg for three consecutive days. At the end of the dexamethasone treatment, goats of groups 1 and 2 were commingled but kept separate from goats of groups 3 and 4, which were commingled in another pen. Three surviving goats from each group were killed on days 7, 14 and 21 post-exposure for postmortem examination. Naso-pharyngeal mucus and heart blood were collected on swabs. Tissues from lungs, lymph nodes and tonsils were collected for bacteriological isolation and identification. Only one goat of group 3 died 6 days post-exposure showing clinical signs and lesions typical of HS. Other goats showed mild signs of upper respiratory tract infection. Goats of all groups developed acute mild pneumonic lesions, however, those treated with dexamethasone had significantly (P < 0.05) more extensive lesion scoring based on the lesion scoring system. P. multocida 6:B was isolated from the nasal mucosa and lung lesions of exposed and contact goats not treated with dexamethasone. Exposed and contact goats treated with dexamethasone carried the organism for 21 days. P. multocida isolation from heart blood was made only from exposed and contact goats treated with dexamethasone. P. multocida was isolated from the lymph node of the goat that died during the experiment.
    Matched MeSH terms: Pasteurella multocida/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links