METHOD: Twelve endurance male runners [age 25 ± 3 years; peak aerobic capacity ([Formula: see text]O2peak) 57.6 ± 3.6 mL.kg-1.min-1] completed three time-to-exhaustion (TTE) trials at ~ 70% [Formula: see text]O2peak while swilling 25 ml of a 6% carbohydrate (CHO) or taste-matched placebo (PLA) as well as no mouth rinse performed in the control (CON) trial.
RESULTS: TTE performance was significantly longer in both CHO and PLA trials when compared with the CON trial (54.7 ± 5.4 and 53.6 ± 5.1 vs. 48.4 ± 3.6 min, respectively; p 0.05). Similarly, plasma lactate and glucose as well as exercise heart rate were not influenced by the trials.
CONCLUSIONS: The present study demonstrates that mouth rinsing, whether carbohydrate or placebo, provides an ergogenic benefit to running endurance when compared to CON in a heat stress environment. Nevertheless, the results do not support the notion that rinsing a carbohydrate solution provides a greater advantage as previously described among non-heat acclimated individuals within a temperate condition.
PURPOSE: This study aimed to compare the kinetics of power output using FI and FR of an anaerobic performance (Wingate test) under 2, 3 and 4% state of hypohydrations.
METHOD: Thirty two collegiate cyclists (age = 22 ± 2 years; body weight = 71.45 ± 3.43 kg; height = 173.23 ± 0.04 cm) were matched using their baseline anaerobic peak power (APP) then randomly divided into 4 groups of EU (euhydrated), 2H, 3H and 4H respectively.
RESULTS: As expected the, FI, APP, anaerobic lower power (ALP) and rating of perceived exertion (RPE) did not show significant differences between and within the groups. However, the FR in 3H (0.018 ± 0.005 s(-1)) and 4H (0.019 ± 0.010 s(-1)) were significantly lower than EU (0.033 ± 0.012 s(-1)). Post-test FR also showed significant reduction in 3H and 4H compared to their pre-test values (p<0.05).
CONCLUSION: Despite the lack of changes in APP and RPE, subjects in 3H and 4H showed evidence of lower reduction of power output over time. The findings support earlier reports which showed no change in anaerobic performance under mild hypohydrations. The relatively lower FR suggests higher drive in maintaining power output under hypohydrations of 3 and 4% body weight.
METHODS: Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis.
RESULTS: Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups.
CONCLUSIONS: It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.