METHOD: Two lifting loads were considered in this study: 1 kg and 5 kg. Each subject adjusted his frequency of lifting using a psychophysical approach. The subjects were instructed to perform combined MMH task as fast as they could over a period of 45 minutes without exhausting themselves or becoming overheated. The physiological response energy expenditure was recorded during the experimental sessions. The ratings of perceived exertion (RPE) for four body parts (forearms, upper arm, lower back and entire body) were recorded after the subjects had completed the instructed task.
RESULTS: The mean frequencies of the MMH task had been 6.8 and 5.5 cycles/minute for lifting load of 1 and 5 kg, respectively, while the mean energy expenditure values were 4.16 and 5.62 kcal/min for 1 and 5 kg load, respectively. These displayed a significant difference in the Maximum Acceptable Frequency of Lift (MAFL) between the two loads, energy expenditure and RPE (p < 0.05) whereby the subjects appeared to work harder physiologically for heavier load.
CONCLUSION: It can be concluded that it is significant to assess physiological response and RPE in determining the maximum acceptable lifting frequency at varied levels of load weight. The findings retrieved in this study can aid in designing tasks that do not exceed the capacity of workers in order to minimise the risk of WRMSDs.
HYPOTHESIS: The addition of WR worn on the lower legs during an on-field warm-up would lead to decreases in relatively high-intensity external TL metrics, such as distance covered >6.11 m∙s-1 and acceleration and deceleration >/<3 m∙s-2 and increases in internal TL during the warm-up, yet would have little effect on the subsequent training session when WR was removed.
STUDY DESIGN: Matched-pair randomized design.
LEVEL OF EVIDENCE: Level 3.
METHODS: A total of 28 soccer players were allocated to either a WR training (WRT = 14) or unloaded (control [CON] = 14) group. Both groups performed the same warm-up and on-field training for 8 weeks, with the WRT group wearing 200 g to 600 g loads on their lower leg during the warm-up. External TL was measured via global positioning system data and internal TL was assessed using session rating of perceived exertion (sRPE × time per session).
RESULTS: No statistically significant between-group differences (P ≥ 0.05) were identified for any TL measurement during either warm-ups or training sessions. Lower leg WR resulted in trivial to moderate effects for all external TL metrics (-16.9% to 2.40%; d = -0.61 to 0.14) and sRPE (-0.33%; d = -0.03) during the warm-up and trivial to small effects on all external TL metrics (-8.95% to -0.36%; d = -0.45 to -0.30) and sRPE (3.39%; d = 0.33) during training sessions.
CONCLUSION: Warming up with lower leg WR negatively affects neither the quality and quantity of the warm-up nor the subsequent training session once WR is removed.
CLINICAL RELEVANCE: Using WR on the lower leg during on-field warm-ups may be a means to "microdose" strength training while not unduly increasing TL. However, further research is needed to determine the influence of WR on strength qualities.
METHODS: Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis.
RESULTS: Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups.
CONCLUSIONS: It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.