Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Abd Wahid MA, Megat Mohd Noor MJ, Goto M, Sugiura N, Othman N, Zakaria Z, et al.
    Biosci Biotechnol Biochem, 2017 Aug;81(8):1642-1649.
    PMID: 28585494 DOI: 10.1080/09168451.2017.1329617
    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
    Matched MeSH terms: Pichia/genetics; Pichia/metabolism
  2. Abu ML, Nooh HM, Oslan SN, Salleh AB
    BMC Biotechnol, 2017 Nov 10;17(1):78.
    PMID: 29126403 DOI: 10.1186/s12896-017-0397-7
    BACKGROUND: Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii.

    RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.

    CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.

    Matched MeSH terms: Pichia/genetics*; Pichia/metabolism*
  3. Abu ML, Mohammad R, Oslan SN, Salleh AB
    Prep Biochem Biotechnol, 2021;51(4):350-360.
    PMID: 32940138 DOI: 10.1080/10826068.2020.1818256
    A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
    Matched MeSH terms: Pichia/genetics*; Pichia/metabolism*
  4. Abubakar MB, Aini I, Omar AR, Hair-Bejo M
    J Biomed Biotechnol, 2011;2011:414198.
    PMID: 21541235 DOI: 10.1155/2011/414198
    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1) avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1).
    Matched MeSH terms: Pichia/metabolism*
  5. Chan GF, Gan HM, Ling HL, Rashid NA
    Eukaryotic Cell, 2012 Oct;11(10):1300-1.
    PMID: 23027839 DOI: 10.1128/EC.00229-12
    A draft genome sequence of Pichia kudriavzevii M12 is presented here. The genome reveals the presence of genes encoding enzymes involved in xylose utilization and the pentose phosphate pathway for bioethanol production. Strain M12 is also a potential producer of phytases, enzymes useful in food processing and agriculture.
    Matched MeSH terms: Pichia/genetics*
  6. Chan MK, Lim SK, Miswan N, Chew AL, Noordin R, Khoo BY
    Protein Expr Purif, 2018 Jan;141:52-62.
    PMID: 28893606 DOI: 10.1016/j.pep.2017.09.003
    This study described the isolation of the coding region of human topoisomerase I (TopoI) from MDA-MB-231 and the expression of multiple copy recombinant genes in four Pichia pastoris strains. First, polymerase chain reaction (PCR)-amplification of the enzyme coding region was performed. The PCR fragment was cloned into pPICZ-α-A vector and sequenced. It was then transformed into X33, GS115, SMD1168H and KM71H strains of Pichia. PCR-screening for positive clones was performed, and estimation of multiple copy integrants in each Pichia strain was carried out using agar plates containing increasing concentrations of Zeocin(®). The selected clones of multiple copy recombinant genes were then induced for TopoI expression in shaker flasks. GS115 and SMD1168 were found to be better Pichia strains to accommodate the recombinant gene for the expression of TopoI extracellularly. However, the DNA relaxation activity revealed that only the target enzyme in the culture supernatants of GS115-pPICZ-α-A-TopoI exhibited consistent enzyme activity over the cultivation time-points. Active enzyme activity was inhibited by Camptothecin. The enzyme produced can be used for in-house gel-based DNA relaxation assay development in performing high throughput screening for target-specific growth inhibitors that display similar effect as the TopoI inhibitors. These inhibitors may contribute to the improvement of the treatment of cancer patients.
    Matched MeSH terms: Pichia/genetics*
  7. Chang PY, Fong MY, Nissapatorn V, Lau YL
    Am J Trop Med Hyg, 2011 Sep;85(3):485-9.
    PMID: 21896809 DOI: 10.4269/ajtmh.2011.11-0351
    Rhoptry protein 2 (ROP2) of Toxoplasma gondii is a rhoptry-secreted protein that plays a critical role in parasitophorous vacuole membrane formation during invasion. In previous studies, ROP2 has been shown to be efficient in triggering humoral and cell-mediated responses. High immunogenicity of ROP2 makes it a potential candidate for diagnosis and vaccination against toxoplasmosis. In this study, the ROP2 gene was cloned into pPICZα A expression vector and extracellularly expressed in the yeast Pichia pastoris, which has numerous advantages over other expression systems for eukaryotic proteins expression. The effectiveness of the secreted recombinant ROP2 as a diagnosis agent was assessed by Western Blot with 200 human serum samples. Recombinant ROP2 reacted with toxoplasmosis-positive human serum samples and yielded an overall sensitivity of 90% and specificity of 95%. However, recombinant ROP2 is a better marker for detection of IgG (91.7%) rather than IgM (80%).
    Matched MeSH terms: Pichia/metabolism*
  8. Chew AL, Tan WY, Khoo BY
    Biomed Rep, 2013 Mar;1(2):185-192.
    PMID: 24648916
    Apart from their major function in the coordination of leukocyte recruitment, chemokines, in cooperation with their receptors, have been implicated in the progression of various diseases including different types of cancer, affecting survival, proliferation and metastasis. A complex network of chemokines and receptors exists in the tumor microenvironment and affects tumor development in various ways where chemokines activate typical signalling pathways by binding to the respective receptors. The identification and characterization of a group of atypical chemokine receptors [D6, Duffy antigen receptor for chemokines (DARC), ChemoCentryx chemokine receptor (CCX-CKR) and CXCR7] which appear to use unique biochemical properties to regulate the biological activities of these chemokines, is useful in the effort to therapeutically manipulate chemokines in a broad spectrum of diseases in which these chemokines play a critical role. The aim of this review was to investigate the combinatorial effect of two reported atypical chemokine receptors, D6 and DARC, on breast cancer cell invasion to understand their role and therapeutic potential in cancer treatment. In this regard, findings of the present review should be confirmed via the construction of recombinant D6 and DARC clones as well as the expression of the respective recombinant proteins using the Pichia pastoris (P. pastoris) expression system is to be performed in a future study in order to support findings of the current review.
    Matched MeSH terms: Pichia
  9. Eissazadeh S, Moeini H, Dezfouli MG, Heidary S, Nelofer R, Abdullah MP
    Braz J Microbiol, 2017 Apr-Jun;48(2):286-293.
    PMID: 27998673 DOI: 10.1016/j.bjm.2016.10.017
    This study was carried out to express human epidermal growth factor (hEGF) in Pichia pastoris GS115. For this aim, the hEGF gene was cloned into the pPIC9K expression vector, and then integrated into P. pastoris by electroporation. ELISA-based assay showed that the amount of hEGF secreted into the medium can be affected by the fermentation conditions especially by culture medium, pH and temperature. The best medium for the optimal hEGF production was BMMY buffered at a pH range of 6.0 and 7.0. The highest amount of hEGF with an average yield of 2.27μg/mL was obtained through an induction of the culture with 0.5% (v/v) methanol for 60h. The artificial neural network (ANN) analysis revealed that changes in both pH and temperature significantly affected the hEGF production with the pH change had slightly higher impact on hEGF production than variations in the temperature.
    Matched MeSH terms: Pichia/genetics; Pichia/metabolism*
  10. Ejike UC, Chan CJ, Lim CSY, Lim RLH
    Appl Microbiol Biotechnol, 2021 Apr;105(7):2799-2813.
    PMID: 33763709 DOI: 10.1007/s00253-021-11225-x
    Fungal immunomodulatory proteins (FIPs) are bioactive proteins with immunomodulatory properties. We previously reported the heterologous production in Escherichia coli of FIP-Lrh from Tiger milk mushroom (Lignosus rhinocerus) with potent cytotoxic effect on cancer cell lines. However, protein produced in E. coli lacks post-translational modifications and may be contaminated with lipopolysaccharide (LPS) endotoxin. Therefore, in this study, yFIP-Lrh produced in Pichia pastoris was functionally compared with eFIP-Lrh produced in E. coli. Expression construct of FIP-Lrh cDNA in pPICZα was generated, transformed into P. pastoris X-33 and Mut+ transformants were verified by colony PCR. Induction with 0.5% or 1% methanol resulted in a secreted 13.6 kDa yFIP-Lrh which was subsequently purified and verified using LCMS/MS analysis. Size exclusion chromatography confirmed eFIP-Lrh as a homodimer whereas the larger size of yFIP-Lrh may indicate post-translational modification despite negative for glycoproteins staining. At lower concentration (4-8 μg/mL), yFIP-Lrh induced significantly higher Th1 (IFN-γ, TNF-α) and Th2 (IL-6, IL-4, IL-5, IL-13) cytokines production in mice splenocytes, whereas 16 μg/mL eFIP-Lrh induced significantly higher pro-inflammatory cytokines (TNF-α, IL-6, IL-10), possibly due to higher residual LPS endotoxin (0.082 EU/mL) in eFIP-Lrh compared to negligible level in yFIP-Lrh (0.001 EU/mL). Furthermore, yFIP-Lrh showed higher cytotoxic effect on MCF-7 and HeLa cancer cells. Since both recombinant proteins of FIP-Lrh have the same peptide sequence, besides glycosylation, other post-translational modifications in yFIP-Lrh may account for its enhanced immunomodulatory and anti-proliferative activities. In conclusion, P. pastoris is preferred over E. coli for production of a functionally active yFIP-Lrh devoid of endotoxin contamination. KEY POINTS: • FIP-Lrh can induced production of Th1 and Th2 cytokines by mouse splenocytes. • Higher cytotoxic effect on cancer cells observed for yeast compared to E. coli produced FIP-Lrh. • P. pastoris allows production of an endotoxin-free and functionally active recombinant FIP-Lrh.
    Matched MeSH terms: Pichia/genetics
  11. Fong MY, Lau YL, Zulqarnain M
    Biotechnol Lett, 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Pichia/genetics*
  12. Fong MY, Lau YL
    Parasitol Res, 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
    Matched MeSH terms: Pichia/genetics; Pichia/metabolism*
  13. Gandhi S, Salleh AB, Rahman RN, Chor Leow T, Oslan SN
    Biomed Res Int, 2015;2015:529059.
    PMID: 26090417 DOI: 10.1155/2015/529059
    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.
    Matched MeSH terms: Pichia/genetics
  14. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: Pichia/metabolism
  15. Joseph NM, Ho KL, Tey BT, Tan CS, Shafee N, Tan WS
    Biotechnol Prog, 2016 Jul 08;32(4):1038-45.
    PMID: 27088434 DOI: 10.1002/btpr.2279
    The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.
    Matched MeSH terms: Pichia/metabolism*
  16. Karim KM, Husaini A, Hossain MA, Sing NN, Mohd Sinang F, Hussain MH, et al.
    Biomed Res Int, 2016;2016:5962028.
    PMID: 27504454 DOI: 10.1155/2016/5962028
    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg(++), Fe(++), Zn(++), Cu(++), and Pb(++)) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries.
    Matched MeSH terms: Pichia/genetics*; Pichia/metabolism*
  17. Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, et al.
    Protein Expr Purif, 2019 12;164:105462.
    PMID: 31351992 DOI: 10.1016/j.pep.2019.105462
    The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
    Matched MeSH terms: Pichia/genetics
  18. Kuo IC, Cheong N, Trakultivakorn M, Lee BW, Chua KY
    J Allergy Clin Immunol, 2003 Mar;111(3):603-9.
    PMID: 12642844
    BACKGROUND: Dual sensitization by Blomia tropicalis and Dermatophagoides pteronyssinus mites is common in tropical and subtropical countries. The human IgE cross-reactivity between clinical important group 5 allergens, Blo t 5 and Der p 5, remains controversial.

    OBJECTIVE: This study was undertaken to assess the levels of the IgE cross-reactivity between Blo t 5 and Der p 5 by using sera from a large cohort of asthmatic children in subtropical and tropical countries.

    METHODS: Purified recombinant Blo t 5 and Der p 5 were produced in Pichia pastoris and tested against sera from 195 asthmatic children. The IgE cross-reactivity was examined by direct, inhibitory and competitive human IgE enzyme-linked immunosorbent assay as well as skin prick tests.

    RESULTS: The Blo t 5 IgE responses were 91.8% (134 of 146) and 73.5% (36 of 49) for Taiwanese and Malaysian sera, respectively. The Blo t 5 specific IgE titers were significantly higher than those of Der p 5 (P

    Matched MeSH terms: Pichia/immunology
  19. Latiffi AA, Salleh AB, Rahman RN, Oslan SN, Basri M
    Genes Genet Syst, 2013;88(2):85-91.
    PMID: 23832300
    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.
    Matched MeSH terms: Pichia/enzymology*; Pichia/genetics; Pichia/growth & development
  20. Lau YL, Fong MY, Idris MM, Ching XT
    PMID: 23082548
    Detection of Toxoplasma gondii infection is essential in pregnant women and immunosuppressed patients. Numerous studies have shown that the recombinant production of several Toxoplasma antigens, including dense granule antigens (GRAs) has high potential as diagnostic reagents. In the present study, we produced GRA2 using Pichia pastoris system. RNA of T. gondii RH strain tachyzoite was used as a template to produce cDNA clones of full-length GRA2 via reverse transcriptase PCR. Amplicons were inserted into pPICZalpha A and the recombinant plasmid transformed into P. pastoris, X-33 strain. The expressed recombinant protein was identified by SDS-PAGE and Western blotting. A recombinant protein of -28 kDa was produced, which could be detected by toxoplasmosis positive human sera indicating that the recombinant protein retained its antigenicity. The present study indicates that P. pastoris-expressed GRA2 should be useful for detection of Toxoplasma infection.
    Matched MeSH terms: Pichia/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links