Displaying publications 1 - 20 of 307 in total

Abstract:
Sort:
  1. Chin EZ, Chang WJ, Tan HY, Liew SY, Lau YL, Ng YL, et al.
    Bioorg Med Chem Lett, 2024 May 01;103:129701.
    PMID: 38484804 DOI: 10.1016/j.bmcl.2024.129701
    Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 μM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.
    Matched MeSH terms: Plasmodium falciparum
  2. Lai MY, Ponnampalavanar SSS, Omar SFS, Lau YL
    Acta Trop, 2024 Mar;251:107120.
    PMID: 38199452 DOI: 10.1016/j.actatropica.2024.107120
    Combining the advantages of PCR and LAMP, we described a new technique, namely PCR-LAMP, for malaria diagnosis. The whole process of DNA amplification can be completed in 35 min. This hybrid amplification technique markedly improved the sensitivity of detection compared to the classic single PCR or LAMP assay alone. PCR-LAMP assay had a detection limit of 1 copy/µL for P. knowlesi and P. ovale, 0.1 copy/µL for P. vivax, P. falciparum and P. malariae, respectively. To facilitate the endpoint detection, xylenol orange was added. Positive samples were indicated in orange while negative reactions were violet. The inclusion of xylenol orange into the LAMP reaction mix significantly reduces the post-amplification workload. Without relying on the use of specific instruments, the color changes of the amplicons could be visualized directly through the naked eye. In conclusion, PCR-LAMP poses the potential to be developed as a new malaria molecular diagnosis tool.
    Matched MeSH terms: Plasmodium falciparum/genetics
  3. Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Agustar HK, Ismail N, et al.
    Eur J Med Chem, 2024 Jan 15;264:116043.
    PMID: 38118392 DOI: 10.1016/j.ejmech.2023.116043
    Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.
    Matched MeSH terms: Plasmodium falciparum
  4. Lithanatudom P, Chawansuntati K, Saenjum C, Chaowasku T, Rattanathammethee K, Wungsintaweekul B, et al.
    BMC Res Notes, 2023 Dec 22;16(1):381.
    PMID: 38135870 DOI: 10.1186/s13104-023-06664-w
    OBJECTIVE: Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining.

    RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.

    Matched MeSH terms: Plasmodium falciparum
  5. Sangsri R, Choowongkomon K, Tuntipaiboontana R, Sugaram R, Boondej P, Sudathip P, et al.
    Acta Trop, 2023 Dec;248:107016.
    PMID: 37683820 DOI: 10.1016/j.actatropica.2023.107016
    BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program.

    METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates.

    RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates.

    CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.

    Matched MeSH terms: Plasmodium falciparum/genetics
  6. Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, et al.
    Nat Commun, 2023 Nov 15;14(1):7387.
    PMID: 37968278 DOI: 10.1038/s41467-023-43181-7
    Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
    Matched MeSH terms: Plasmodium falciparum/genetics
  7. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI
    Eur J Med Chem, 2023 Nov 05;259:115694.
    PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694
    Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
    Matched MeSH terms: Plasmodium falciparum
  8. Byrne I, William T, Chua TH, Patterson C, Hall T, Tan M, et al.
    Sci Rep, 2023 Aug 10;13(1):12998.
    PMID: 37563178 DOI: 10.1038/s41598-023-39670-w
    Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.
    Matched MeSH terms: Plasmodium falciparum
  9. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI
    Eur J Med Chem, 2023 Aug 05;256:115458.
    PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458
    Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
    Matched MeSH terms: Plasmodium falciparum
  10. Kobayashi Y, Komatsuya K, Imamura S, Nozaki T, Watanabe YI, Sato S, et al.
    Proc Natl Acad Sci U S A, 2023 Jul 11;120(28):e2214765120.
    PMID: 37406097 DOI: 10.1073/pnas.2214765120
    The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.
    Matched MeSH terms: Plasmodium falciparum/genetics; Plasmodium falciparum/metabolism
  11. Nugroho AE, Wong CP, Hirasawa Y, Kaneda T, Tougan T, Horii T, et al.
    J Nat Med, 2023 Jun;77(3):596-603.
    PMID: 37162697 DOI: 10.1007/s11418-023-01706-w
    Ceramicines are a series of limonoids that were isolated from the bark of Malaysian Chisocheton ceramicus (Meliaceae) and were known to show various biological activity. Four new limonoids, ceramicines Q-T (1-4) were isolated from the barks of C. ceramicus, and their structures were determined on the basis of the 1D and 2D NMR analyses in combination with calculated 13C chemical shift data. Ceramicines Q-T (1-4) were established to be new limonoids with a cyclopentanone[α]phenanthren ring system with a β-furyl ring at C-17, and without a tetrahydrofuran ring like ceramicine B, which is characteristic of known ceramicines. Ceramicine R (2) exhibited potent antimalarial activity against Plasmodium falciparum 3D7 strain with IC50 value of 2.8 µM.
    Matched MeSH terms: Plasmodium falciparum
  12. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI
    Eur J Pharm Sci, 2023 Apr 01;183:106365.
    PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365
    Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
    Matched MeSH terms: Plasmodium falciparum
  13. Tan JH, Cheong FW, Lau YL, Fong MY
    Trop Biomed, 2023 Mar 01;40(1):37-44.
    PMID: 37356002 DOI: 10.47665/tb.40.1.004
    Circumsporozoite protein (CSP) central repeat region is one of the main target regions of the RTS,S/AS01 vaccine for falciparum infection as it consists of immunodominant B cell epitopes. However, there is a lack of study for P. knowlesi CSP central repeat region. This study aims to characterise the CSP repeat motifs of P. knowlesi isolates in Peninsular Malaysia. CSP repeat motifs of 64 P. knowlesi isolates were identified using Rapid Automatic Detection and Alignment of Repeats (RADAR). Antigenicity of the repeat motifs and linear B cell epitopes were predicted using VaxiJen 2.0, BepiPred-2.0 and BCPred, respectively. A total of 35 dominant repeat motifs were identified. The repeat motif "AGQPQAQGDGANAGQPQAQGDGAN" has the highest repeat frequency (n=15) and antigenicity index of 1.7986. All the repeat regions were predicted as B cell epitopes. In silico approaches revealed that all repeat motifs were antigenic and consisted of B cell epitopes which could be designed as knowlesi malaria vaccine.
    Matched MeSH terms: Plasmodium falciparum
  14. T Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, et al.
    Malar J, 2023 Feb 14;22(1):54.
    PMID: 36782162 DOI: 10.1186/s12936-023-04483-9
    BACKGROUND: The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials.

    METHODS: Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles.

    RESULTS: The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method.

    CONCLUSION: For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.

    Matched MeSH terms: Plasmodium falciparum
  15. Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, et al.
    Malar J, 2022 Dec 17;21(1):386.
    PMID: 36528584 DOI: 10.1186/s12936-022-04406-0
    BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed.

    METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains.

    RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis.

    CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.

    Matched MeSH terms: Plasmodium falciparum
  16. Safar HF, Ali AH, Zakaria NH, Kamal N, Hassan NI, Agustar HK, et al.
    Trop Biomed, 2022 Dec 01;39(4):552-558.
    PMID: 36602215 DOI: 10.47665/tb.39.4.011
    Diplazium esculentum is an edible fern commonly consumed by the local community in Malaysia either as food or medicine. Isolation work on the ethyl acetate extract of the stem of D. esculentum resulted in the purification of two steroids, subsequently identified as stigmasterol (compound 1) and ergosterol5,8-endoperoxide (compound 2). Upon further testing, compound 2 displayed strong inhibitory activity against the Plasmodium falciparum 3D7 (chloroquine-sensitive) strain, with an IC50 of 4.27±1.15 µM, while compound 1 was inactive. In silico data revealed that compound 2 showed good binding affinity to P. falciparum-Sarco endoplasmic reticulum calcium-dependent ATPase (PfATP6); however, compound 1 did not show an antiplasmodial effect due to the lack of a peroxide moiety in the chemical structure. Our data suggested that the antiplasmodial activity of compound 2 from D. esculentum might be due to the inhibition of PfATP6, which resulted in both in vitro and in silico inhibitory properties.
    Matched MeSH terms: Plasmodium falciparum
  17. Sugiarto SR, Baird JK, Singh B, Elyazar I, Davis TME
    Malar J, 2022 Nov 14;21(1):327.
    PMID: 36372877 DOI: 10.1186/s12936-022-04366-5
    Kalimantan is a part of Indonesia, which occupies the southern three-quarters of the island of Borneo, sharing a border with the Malaysian states of Sabah and Sarawak. Although most areas of Kalimantan have low and stable transmission of Plasmodium falciparum and Plasmodium vivax, there are relatively high case numbers in the province of East Kalimantan. Two aspects of malaria endemicity in Kalimantan differentiate it from the rest of Indonesia, namely recent deforestation and potential exposure to the zoonotic malaria caused by Plasmodium knowlesi that occurs in relatively large numbers in adjacent Malaysian Borneo. In the present review, the history of malaria and its current epidemiology in Kalimantan are examined, including control and eradication efforts over the past two centuries, mosquito vector prevalence, anti-malarial use and parasite resistance, and the available data from case reports of knowlesi malaria and the presence of conditions which would support transmission of this zoonotic infection.
    Matched MeSH terms: Plasmodium falciparum
  18. Nainggolan IRA, Syafutri RD, Sinambela MN, Devina C, Handayani, Hasibuan BS, et al.
    Malar J, 2022 Nov 05;21(1):316.
    PMID: 36333701 DOI: 10.1186/s12936-022-04335-y
    BACKGROUND: Indonesia is progressing towards malaria elimination. To achieve this goal, intervention measures must be addressed to cover all Plasmodium species. Comprehensive control measures and surveillance programmes must be intensified. This study aims to determine the prevalence of microscopic and submicroscopic malaria in Langkat district, North Sumatera Province, Indonesia.

    METHODS: A cross-sectional survey was conducted in six villages in Langkat district, North Sumatera Province in June 2019. Data were recorded using a standardized questionnaire. Finger pricked blood samples were obtained for malaria examination using rapid diagnostic test, thick and thin blood smears, and polymerase chain reaction.

    RESULTS: A total of 342 individuals were included in the study. Of them, one (0.3%) had a microscopic Plasmodium malariae infection, no positive RDT examination, and three (0.9%) were positive for P. malariae (n = 1) and Plasmodium knowlesi (n = 2). The distribution of bed net ownership was owned by 40% of the study participants. The participants had a house within a radius of 100-500 m from the forest (86.3%) and had the housing material of cement floor (56.1%), a tin roof (82.2%), wooden wall (35.7%), bamboo wall (28.1%), and brick wall (21.6%).

    CONCLUSION: Malaria incidence has substantially decreased in Langkat, North Sumatera, Indonesia. However, submicroscopic infection remains in the population and may contribute to further transmission. Surveillance should include the detection of microscopic undetected parasites, to enable the achievement of malaria elimination.

    Matched MeSH terms: Plasmodium falciparum
  19. Naing C, Htet NH, Aye SN, Aung HH, Tanner M, Whittaker MA
    Malar J, 2022 Feb 16;21(1):50.
    PMID: 35172833 DOI: 10.1186/s12936-022-04082-0
    BACKGROUND: Achieving malaria elimination requires the targeting of the human reservoir of infection, including those patients with asymptomatic infection. The objective was to synthesise evidence on the accuracy of the rapid-onsite diagnostic tests (RDTs) and microscopy for the detection of asymptomatic malaria as part of the surveillance activities in Asian countries.

    METHODS: This was a meta-analysis of diagnostic test accuracy. Relevant studies that evaluated the diagnostic performance of RDTs and microscopy for detection of asymptomatic malaria were searched in health-related electronic databases. The methodological quality of the studies included was assessed using the QUADAS-2 tool.

    RESULTS: Ten studies assessing RDT and/or microscopy were identified. The diagnostic accuracies in all these studies were verified by PCR. Overall, the pooled sensitivities of RDT, as well as microscopy for detection of any malaria parasites in asymptomatic participants, were low, while their pooled specificities were almost ideal. For the detection of Plasmodium falciparum, pooled sensitivity by RDT (59%, 95%CI:16-91%) or microscopy (55%, 95%CI: 25-82%) were almost comparable. For detection of Plasmodium vivax, pooled sensitivity of RDT (51%, 95% CI:7-94%) had also the comparable accuracy of microscopy (54%, 95%CI,11-92%). Of note are the wide range of sensitivity and specificity.

    CONCLUSION: The findings of this meta-analysis suggest that RDTs and microscopy have limited sensitivity and are inappropriate for the detection of asymptomatic Plasmodium infections. Other methods including a combination of PCR-based strategies, Loop-Mediated Isothermal Amplification (LAMP) technique must be considered to target these infections, in order to achieve malaria elimination. However, more data is needed for the wide acceptance and feasibility of these approaches. Studies to explore the role of asymptomatic and sub-patent infections in the transmission of malaria are of critical importance and are recommended.

    Matched MeSH terms: Plasmodium falciparum
  20. Atroosh WM, Lau YL, Snounou G, Azzani M, Al-Mekhlafi HM
    Malar J, 2022 Jan 04;21(1):2.
    PMID: 34983529 DOI: 10.1186/s12936-021-04014-4
    BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker.

    METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients.

    RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection.

    CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.

    Matched MeSH terms: Plasmodium falciparum/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links