Displaying all 13 publications

Abstract:
Sort:
  1. Lim SH, Jahanshiri F, Jalilian FA, Rahim RA, Sekawi Z, Yusoff K
    Acta Virol., 2010;54(3):181-7.
    PMID: 20822310
    Human respiratory syncytial virus (HRSV) is a leading pathogen causing lower respiratory tract infections in infants and young children worldwide. In line with the development of an effective vaccine against HRSV, a domain of the fusion (F) glycoprotein of HRSV was produced and its immunogenicity and antigenic properties, namely the effect of deficient glycosylation was examined. A His-tagged recombinant F (rF) protein was expressed in Escherichia coli, solubilized with 8 mol/l urea, purified by the Ni-NTA affinity chromatography and used for the raising of a polyclonal antibody in rabbits. The non-glycosylated rF protein proved to be a strong immunogen that induced a polyclonal antibody that was able to recognize also the glycosylated F1 subunit of native HRSV. The other way around, a polyclonal antibody prepared against the native HRSV was able to react with the rF protein. These results indicated that glycosylation was not necessary for the F domain aa 212-574 in order to be recognized by the specific polyclonal antibody.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/immunology*; Viral Fusion Proteins/metabolism; Viral Fusion Proteins/chemistry*
  2. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    Arch Virol, 2010;155(1):63-70.
    PMID: 19898736 DOI: 10.1007/s00705-009-0540-4
    Sequence analysis of the fusion (F) gene of eight Malaysian NDV isolates showed that all the isolates were categorized as velogenic viruses, with the F cleavage site motif (112)R-R-Q-K-R(116) or (112)R-R-R-K-R(116) at the C-terminus of the F(2) protein and phenylalanine (F) at residue 117 at the N-terminus of the F(1) protein. Phylogenetic analysis revealed that all of the isolates were grouped in two distinct clusters under sub-genotype VIId. The isolates were about 4.8-11.7% genetically distant from sub-genotypes VIIa, VIIb, VIIc and VIIe. When the nucleotide sequences of the eight Malaysian isolates were compared phylogenetically to those of the old published local isolates, it was found that genotype VIII, VII, II and I viruses exist in Malaysia and caused sporadic infections. It is suggested that genotype VII viruses were responsible for most of the outbreaks in recent years.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/chemistry
  3. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/metabolism; Viral Fusion Proteins/chemistry*
  4. Lou Z, Xu Y, Xiang K, Su N, Qin L, Li X, et al.
    FEBS J, 2006 Oct;273(19):4538-47.
    PMID: 16972940
    The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.
    Matched MeSH terms: Viral Fusion Proteins/chemistry*
  5. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K
    Lett Appl Microbiol, 2010 Dec;51(6):658-64.
    PMID: 20973806 DOI: 10.1111/j.1472-765X.2010.02950.x
    A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed.
    Matched MeSH terms: Viral Fusion Proteins/metabolism*
  6. Eshaghi M, Tan WS, Chin WK, Yusoff K
    J Biotechnol, 2005 Mar 30;116(3):221-6.
    PMID: 15707682
    The glycoprotein (G) of Nipah virus (NiV) is important for virus infectivity and induction of the protective immunity. In this study, the extra-cellular domain of NiV G protein was fused with hexahistidine residues at its N-terminal end and expressed in Escherichia coli. The expression under transcriptional regulation of T7 promoter yielded insoluble protein aggregates in the form of inclusion bodies. The inclusion bodies were solubilized with 8 M urea and the protein was purified to homogeneity under denaturing conditions using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The denatured protein was renatured by gradual removal of the urea. Light scattering analysis of the purified protein showed primarily monodispersity. The purified protein showed significant reactivity with the antibodies present in the sera of NiV-infected swine, as demonstrated in Western blot analysis and enzyme-linked immunosorbent assay (ELISA). Taken together, the data indicate the potential usefulness of the purified G protein for structural or functional studies and the development of immunoassay for detection of the NiV antibodies.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/immunology*; Viral Fusion Proteins/isolation & purification; Viral Fusion Proteins/chemistry
  7. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/immunology*; Viral Fusion Proteins/metabolism
  8. Chow WZ, Chan YF, Oong XY, Ng LJ, Nor'E SS, Ng KT, et al.
    Sci Rep, 2016 06 09;6:27730.
    PMID: 27279080 DOI: 10.1038/srep27730
    Human metapneumovirus (HMPV) is an important viral respiratory pathogen worldwide. Current knowledge regarding the genetic diversity, seasonality and transmission dynamics of HMPV among adults and children living in tropical climate remains limited. HMPV prevailed at 2.2% (n = 86/3,935) among individuals presented with acute respiratory tract infections in Kuala Lumpur, Malaysia between 2012 and 2014. Seasonal peaks were observed during the northeast monsoon season (November-April) and correlated with higher relative humidity and number of rainy days (P fusion and attachment genes identified the co-circulation of three known HMPV sub-lineages, A2b and B1 (30.2% each, 26/86) and B2 (20.9%, 18/86), with genotype shift from sub-lineage B1 to A2b observed in 2013. Interestingly, a previously unrecognized sub-lineage of A2 was identified in 18.6% (16/86) of the population. Using a custom script for network construction based on the TN93 pairwise genetic distance, we identified up to nine HMPV transmission clusters circulating as multiple sub-epidemics. Although no apparent major outbreak was observed, the increased frequency of transmission clusters (dyads) during seasonal peaks suggests the potential roles of transmission clusters in driving the spread of HMPV. Our findings provide essential information for therapeutic research, prevention strategies, and disease outbreak monitoring of HMPV.
    Matched MeSH terms: Viral Fusion Proteins/genetics*
  9. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, et al.
    Virology, 2000 Jun 5;271(2):334-49.
    PMID: 10860887
    Recently, a new paramyxovirus, now known as Nipah virus (NV), emerged in Malaysia and Singapore, causing fatal encephalitis in humans and a respiratory syndrome in pigs. Initial studies had indicated that NV is antigenically and genetically related to Hendra virus (HV). We generated the sequences of the N, P/C/V, M, F, and G genes of NV and compared these sequences with those of HV and other members of the family Paramyxoviridae. The intergenic regions of NV were identical to those of HV, and the gene start and stop sequences of NV were nearly identical to those of HV. The open reading frames (ORFs) for the V and C proteins within the P gene were found in NV, but the ORF encoding a potential short basic protein found in the P gene of HV was not conserved in NV. The N, P, C, V, M, F, and G ORFs in NV have nucleotide homologies ranging from 88% to 70% and predicted amino acid homologies ranging from 92% to 67% in comparison with HV. The predicted fusion cleavage sequence of the F protein of NV had a single amino acid substitution (K to R) in comparison with HV. Phylogenetic analysis demonstrated that although HV and NV are closely related, they are clearly distinct from any of the established genera within the Paramyxoviridae and should be considered a new genus.
    Matched MeSH terms: Viral Fusion Proteins/genetics
  10. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, et al.
    J Virol, 2006 Aug;80(16):7929-38.
    PMID: 16873250
    Nipah virus (NiV), of the family Paramyxoviridae, was isolated in 1999 in Malaysia from a human fatality in an outbreak of severe human encephalitis, when human infections were linked to transmission of the virus from pigs. Consequently, a swine vaccine able to abolish virus shedding is of veterinary and human health interest. Canarypox virus-based vaccine vectors carrying the gene for NiV glycoprotein (ALVAC-G) or the fusion protein (ALVAC-F) were used to intramuscularly immunize four pigs per group, either with 10(8) PFU each or in combination. Pigs were boosted 14 days postvaccination and challenged with 2.5 x 10(5) PFU of NiV two weeks later. The combined ALVAC-F/G vaccine induced the highest levels of neutralization antibodies (2,560); despite the low neutralizing antibody levels in the F vaccinees (160), all vaccinated animals appeared to be protected against challenge. Virus was not isolated from the tissues of any of the vaccinated pigs postchallenge, and a real-time reverse transcription (RT)-PCR assay detected only small amounts of viral RNA in several samples. In challenge control pigs, virus was isolated from a number of tissues (10(4.4) PFU/g) or detected by real-time RT-PCR. Vaccination of the ALVAC-F/G vaccinees appeared to stimulate both type 1 and type 2 cytokine responses. Histopathological findings indicated that there was no enhancement of lesions in the vaccinees. No virus shedding was detected in vaccinated animals, in contrast to challenge control pigs, from which virus was isolated from the throat and nose (10(2.9) PFU/ml). Based on the data presented, the combined ALVAC-F/G vaccine appears to be a very promising vaccine candidate for swine.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/immunology
  11. Azizi Jalilian F, Yusoff K, Suhaimi S, Amini R, Sekawi Z, Jahanshiri F
    J Biol Regul Homeost Agents, 2015 Jan-Mar;29(1):7-18.
    PMID: 25864737
    Human respiratory syncytial virus is the most common cause of bronchiolitis and other respiratory infections in infants and the elderly worldwide. We have developed two new oral vaccines using Salmonella typhi TY21a to carry and express the immunogenic epitopes of RSV fusion (F) and attachment (G) glycoproteins on its surface, separately. To evaluate the efficacy of the designed vaccines, BALB/c mice were orally immunized and then infected with RSV. Immune response analyses showed that cellmediated, mucosal and humoral immunity in the vaccinated mice were significantly enhanced compared to the control group. Both vaccines generated a balanced Th1/Th2 immune response which is crucial for efficiency of vaccines against RSV. Furthermore, histopathological examination proved that these vaccines were safe as they did not cause any Th2-associated adverse effects in the lungs of RSV-infected mice. The findings of this research suggest that Salmonella-F and Salmonella-G vaccine candidates may have strong potential to prevent RSV infection.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/metabolism
  12. Loke CF, Omar AR, Raha AR, Yusoff K
    Vet Immunol Immunopathol, 2005 Jul 15;106(3-4):259-67.
    PMID: 15963824
    Specific-pathogen free (SPF) chickens were inoculated with the plasmid constructs encoding the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of Newcastle disease virus (NDV), either individually or in combination and challenged with velogenic NDV. The antibody level against NDV was measured using commercial enzyme linked immunosorbent assay (ELISA). In the first immunization regimen, SPF chickens inoculated twice with NDV-F or NDV-HN constructs elicited antibody responses 1 week after the second injection. However, the levels of the antibody were low and did not confer significant protection from the lethal challenge. In addition, administration of the plasmid constructs with Freund's adjuvant did not improve the level of protection. In the second immunization regimen, chickens inoculated twice with the plasmid constructs emulsified with Freund's adjuvant induced significant antibody titers after the third injection. Three out of nine (33.3%) chickens vaccinated with pEGFP-HN, five of ten (50.0%) chickens vaccinated with pEGFP-F and nine of ten (90.0%) chickens vaccinated with combined pEGFP-F and pEGFP-HN were protected from the challenge. No significant differences in the levels of protection were observed when the chickens were vaccinated with linearized pEGFP-F. The results suggested that more than two injections with both F and HN encoding plasmid DNA were required to induce higher level of antibodies for protection against velogenic NDV in chickens.
    Matched MeSH terms: Viral Fusion Proteins/genetics; Viral Fusion Proteins/immunology
  13. Choi KS, Kye SJ, Kim JY, Damasco VR, Sorn S, Lee YJ, et al.
    Virus Genes, 2013 Oct;47(2):244-9.
    PMID: 23764918 DOI: 10.1007/s11262-013-0930-2
    Three isolates of Newcastle disease virus (NDV) were isolated from tracheal samples of dead village chickens in two provinces (Phnom Penh and Kampong Cham) in Cambodia during 2011-2012. All of these Cambodian NDV isolates were categorized as velogenic pathotype, based on in vivo pathogenicity tests and F cleavage site motif sequence ((112)RRRKRF(117)). The phylogenetic analysis and the evolutionary distances based on the sequences of the F gene revealed that all the three field isolates of NDV from Cambodia form a distinct cluster (VIIh) together with three Indonesian strains and were assigned to the genotype VII within the class II. Further phylogenetic analysis based on the hyper-variable region of the F gene revealed that some of NDV strains from Malaysia since the mid-2000s were also classified into the VIIh virus. This indicates that the VIIh NDVs are spreading through Southeast Asia. The present investigation, therefore, emphasizes the importance of further surveillance of NDV in neighboring countries as well as throughout Southeast Asia to contain further spreading of these VIIh viruses.
    Matched MeSH terms: Viral Fusion Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links