Displaying publications 181 - 200 of 392 in total

Abstract:
Sort:
  1. Zhang L, Cenci A, Rouard M, Zhang D, Wang Y, Tang W, et al.
    Sci Rep, 2019 06 03;9(1):8199.
    PMID: 31160634 DOI: 10.1038/s41598-019-44637-x
    Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cubense, especially by tropical race 4 (Foc TR4), is threatening the global banana industry. Musa acuminata Pahang, a wild diploid banana that displays strong resistance to Foc TR4, holds great potential to understand the underlying resistance mechanisms. Microscopic examination reports that, in a wounding inoculation system, the Foc TR4 infection processes in roots of Pahang (resistant) and a triploid cultivar Brazilian (susceptible) were similar by 7 days post inoculation (dpi), but significant differences were observed in corms of both genotypes at 14 dpi. We compare transcriptomic responses in the corms of Pahang and Brazilian, and show that Pahang exhibited constitutive defense responses before Foc TR4 infection and inducible defense responses prior to Brazilian at the initial Foc TR4 infection stage. Most key enzymatic genes in the phenylalanine metabolism pathway were up-regulated in Brazilian, suggesting that lignin and phytotoxin may be triggered during later stages of Foc TR4 infection. This study unravels a few potential resistance candidate genes whose expression patterns were assessed by RT-qPCR assay and improves our understanding the defense mechanisms of Pahang response to Foc TR4.
    Matched MeSH terms: Gene Expression Profiling
  2. Walters K, Sarsenov R, Too WS, Hare RK, Paterson IC, Lambert DW, et al.
    BMC Genomics, 2019 Jun 03;20(1):454.
    PMID: 31159744 DOI: 10.1186/s12864-019-5850-7
    BACKGROUND: Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes in diseases such as cancer, although the functions of most remain poorly understood. To address this, here we apply a novel strategy to integrate gene expression profiles across 32 cancer types, and cluster human lncRNAs based on their pan-cancer protein-coding gene associations. By doing so, we derive 16 lncRNA modules whose unique properties allow simultaneous inference of function, disease specificity and regulation for over 800 lncRNAs.

    RESULTS: Remarkably, modules could be grouped into just four functional themes: transcription regulation, immunological, extracellular, and neurological, with module generation frequently driven by lncRNA tissue specificity. Notably, three modules associated with the extracellular matrix represented potential networks of lncRNAs regulating key events in tumour progression. These included a tumour-specific signature of 33 lncRNAs that may play a role in inducing epithelial-mesenchymal transition through modulation of TGFβ signalling, and two stromal-specific modules comprising 26 lncRNAs linked to a tumour suppressive microenvironment and 12 lncRNAs related to cancer-associated fibroblasts. One member of the 12-lncRNA signature was experimentally supported by siRNA knockdown, which resulted in attenuated differentiation of quiescent fibroblasts to a cancer-associated phenotype.

    CONCLUSIONS: Overall, the study provides a unique pan-cancer perspective on the lncRNA functional landscape, acting as a global source of novel hypotheses on lncRNA contribution to tumour progression.

    Matched MeSH terms: Gene Expression Profiling
  3. Sakharkar MK, Kashmir Singh SK, Rajamanickam K, Mohamed Essa M, Yang J, Chidambaram SB
    PLoS One, 2019;14(9):e0220995.
    PMID: 31487305 DOI: 10.1371/journal.pone.0220995
    Parkinson's disease (PD) is an irreversible and incurable multigenic neurodegenerative disorder. It involves progressive loss of mid brain dopaminergic neurons in the substantia nigra pars compacta (SN). We compared brain gene expression profiles with those from the peripheral blood cells of a separate sample of PD patients to identify disease-associated genes. Here, we demonstrate the use of gene expression profiling of brain and blood for detecting valid targets and identifying early PD biomarkers. Implementing this systematic approach, we discovered putative PD risk genes in brain, delineated biological processes and molecular functions that may be particularly disrupted in PD and also identified several putative PD biomarkers in blood. 20 of the differentially expressed genes in SN were also found to be differentially expressed in the blood. Further application of this methodology to other brain regions and neurological disorders should facilitate the discovery of highly reliable and reproducible candidate risk genes and biomarkers for PD. The identification of valid peripheral biomarkers for PD may ultimately facilitate early identification, intervention, and prevention efforts as well.
    Matched MeSH terms: Gene Expression Profiling
  4. Huang W, Chen X, Guan Q, Zhong Z, Ma J, Yang B, et al.
    Gene, 2019 Mar 20;689:43-50.
    PMID: 30528270 DOI: 10.1016/j.gene.2018.11.083
    Atmospheric CO2 level is one of the most important factors which affect plant growth and crop production. Although many crucial genes and pathways have been identified in response to atmospheric CO2 changes, the integrated and precise mechanisms of plant CO2 response are not well understood. Alternative splicing (AS) is an important gene regulation process that affects many biological processes in plants. However, the AS pattern changes in plants in response to elevated CO2 levels have not yet been investigated. Here, we used RNA-Seq data of Arabidopsis thaliana grown under different CO2 concentration to analyze the global changes in AS. We found that AS increased with the rise in CO2 concentration. Additionally, we identified 345 differentially expressed (DE) genes and 251 differentially alternative splicing (DAS) genes under the elevated CO2 condition. Moreover, the results showed that the expression of most of the DAS genes did not change significantly, indicating that AS can serve as an independent mechanism for gene regulation in response to elevated CO2. Furthermore, our analysis of function categories revealed that the DAS genes were associated mainly with the stimulus response. Overall, this the first study to explore the changes of AS in plants in response to elevated CO2.
    Matched MeSH terms: Gene Expression Profiling
  5. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Gene Expression Profiling
  6. Shettima A, Ishak IH, Abdul Rais SH, Abu Hasan H, Othman N
    PeerJ, 2021;9:e10863.
    PMID: 33717682 DOI: 10.7717/peerj.10863
    Background: Proteomic analyses have broadened the horizons of vector control measures by identifying proteins associated with different biological and physiological processes and give further insight into the mosquitoes' biology, mechanism of insecticide resistance and pathogens-mosquitoes interaction. Female Ae. aegypti ingests human blood to acquire the requisite nutrients to make eggs. During blood ingestion, female mosquitoes transmit different pathogens. Therefore, this study aimed to determine the best protein extraction method for mass spectrometry analysis which will allow a better proteome profiling for female mosquitoes.

    Methods: In this present study, two protein extractions methods were performed to analyze female Ae. aegyti proteome, via TCA acetone precipitation extraction method and a commercial protein extraction reagent CytoBusterTM. Then, protein identification was performed by LC-ESI-MS/MS and followed by functional protein annotation analysis.

    Results: The CytoBusterTM reagent gave the highest protein yield with a mean of 475.90 µg compared to TCA acetone precipitation extraction showed 283.15 µg mean of protein. LC-ESI-MS/MS identified 1,290 and 890 proteins from the CytoBusterTM reagent and TCA acetone precipitation, respectively. When comparing the protein class categories in both methods, there were three additional categories for proteins identified using CytoBusterTM reagent. The proteins were related to scaffold/adaptor protein (PC00226), protein binding activity modulator (PC00095) and intercellular signal molecule (PC00207). In conclusion, the CytoBusterTM protein extraction reagent showed a better performance for the extraction of proteins in term of the protein yield, proteome coverage and extraction speed.

    Matched MeSH terms: Gene Expression Profiling
  7. Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI
    Int J Biol Macromol, 2020 Sep 15;159:497-509.
    PMID: 32387606 DOI: 10.1016/j.ijbiomac.2020.05.011
    In skin tissue engineering, a biodegradable scaffold is usually used where cells grow, produce its own cytokines, growth factors, and extracellular matrix, until the regenerated tissue gradually replaces the scaffold upon its degradation. However, the role of non-biodegradable scaffold remains unexplored. This study investigates the potential of a non-biodegradable bacterial nanocellulose/acrylic acid (BNC/AA) hydrogel to transfer human dermal fibroblasts (HDF) to the wound and the resulting healing effects of transferred HDF in athymic mice. Results demonstrated that the fabricated hydrogel successfully transferred >50% of HDF onto the wound site within 24 h, with evidence of HDF detected on day 7. The gene and protein study unveiled faster wound healing in the hydrogel with HDF group and characterized more mature newly formed skin microstructure on day 7, despite no visible differences. These findings give a new perspective regarding the role of non-biodegradable materials in skin tissue engineering, in the presence of exogenous cells, mainly at the molecular level.
    Matched MeSH terms: Gene Expression Profiling
  8. Abu N, Othman N, Ab Razak NS, Bakarurraini NAAR, Nasir SN, Soh JEC, et al.
    Front Cell Dev Biol, 2020;8:564648.
    PMID: 33324632 DOI: 10.3389/fcell.2020.564648
    Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. It has been shown that the body-mass index (BMI) of the patients could influence the tumor microenvironment, treatment response, and overall survival rates. Nevertheless, the mechanism on how BMI affects the tumorigenesis process, particularly the tumor microenvironment is still elusive. Herein, we postulate that extracellular vesicles (EVs) from CRC patients and non-CRC volunteers with different BMI could affect immune cells differently, in CD8 T cells particularly. We isolated the EVs from the archived serum of CRC patients with high and low BMI, as well as healthy controls with similar BMI status. The EVs were further characterized via electron microscopy, western blot and dynamic light scattering. Then, functional analysis was performed on CD8 T cells including apoptosis, cell proliferation, gene expression profiling and cytokine release upon co-incubation with the different EVs. Our results suggest that CRC-derived EVs were able to regulate the CD8 T cells. In some assays, low BMI EVs were functionally different than high BMI EVs. This study highlights the possible difference in the regulatory mechanism of cancer patients-derived EVs, especially on CD8 T cells.
    Matched MeSH terms: Gene Expression Profiling
  9. Lim CH, Soga T, Levavi-Sivan B, Parhar IS
    Sci Rep, 2020 05 06;10(1):7666.
    PMID: 32376994 DOI: 10.1038/s41598-020-64639-4
    Spexin (SPX), a neuropeptide evolutionarily conserved from fish to mammals, is widely distributed in the brain and peripheral tissues and associated with various physiological functions. Recently SPX has been suggested to be involved in neurological mechanism of stress. The current study investigates the involvement of SPX in chronic social defeat stress, using male teleost, the Nile tilapia (Oreochromis niloticus) as an animal model due to its distinct social hierarchy of dominant and subordinate relationship. The tilapia genome has SPX1a and SPX1b but has no SPX2. In the Nile tilapia, we localized SPX1a and SPX1b in the brain using in-situ hybridization. Next, using qPCR we examined gene expression of SPX1a and SPX1b in chronically stress (socially defeated) fish. SPX1a expressing cells were localized in the semicircular torus of the midbrain region and SPX1b expressing cells in the telencephalon. Chronically stress fish showed elevated plasma cortisol levels; with an upregulation of SPX1a and SPX1b gene expression in the brain compared to non-stress (control) fish. Since social defeat is a source of stress, the upregulated SPX mRNA levels during social defeat suggests SPX as a potentially inhibitory neuropeptide capable of causing detrimental changes in behaviour and physiology.
    Matched MeSH terms: Gene Expression Profiling
  10. Tan SL, Ahmad TS, Selvaratnam L, Kamarul T
    J Anat, 2013 Apr;222(4):437-50.
    PMID: 23510053 DOI: 10.1111/joa.12032
    Mesenchymal stem cells (MSCs) are recognized by their plastic adherent ability, fibroblastic-like appearance, expression of specific surface protein markers, and are defined by their ability to undergo multi-lineage differentiation. Although rabbit bone marrow-derived MSCs (rbMSCs) have been used extensively in previous studies especially in translational research, these cells have neither been defined morphologically and ultrastructurally, nor been compared with their counterparts in humans in their multi-lineage differentiation ability. A study was therefore conducted to define the morphology, surface marker proteins, ultrastructure and multi-lineage differentiation ability of rbMSCs. Herein, the primary rbMSC cultures of three adult New Zealand white rabbits (at least 4 months old) were used for three independent experiments. rbMSCs were isolated using the gradient-centrifugation method, an established technique for human MSCs (hMSCs) isolation. Cells were characterized by phase contrast microscopy observation, transmission electron microscopy analysis, reverse transcriptase-polymerase chain reaction (PCR) analysis, immunocytochemistry staining, flow cytometry, alamarBlue(®) assay, histological staining and quantitative (q)PCR analysis. The isolated plastic adherent cells were in fibroblastic spindle-shape and possessed eccentric, irregular-shaped nuclei as well as rich inner cytoplasmic zones similar to that of hMSCs. The rbMSCs expressed CD29, CD44, CD73, CD81, CD90 and CD166, but were negative (or dim positive) for CD34, CD45, CD117 and HLD-DR. Despite having similar morphology and phenotypic expression, rbMSCs possessed significantly larger cell size but had a lower proliferation rate as compared with hMSCs. Using established protocols to differentiate hMSCs, rbMSCs underwent osteogenic, adipogenic and chondrogenic differentiation. Interestingly, differentiated rbMSCs demonstrated higher levels of osteogenic (Runx2) and chondrogenic (Sox9) gene expressions than that of hMSCs (P  0.05). rbMSCs possess similar morphological characteristics to hMSCs, but have a higher potential for osteogenic and chondrogenic differentiation, despite having a lower cell proliferation rate than hMSCs. The characteristics reported here may be used as a comprehensive set of criteria to define or characterize rbMSCs.
    Matched MeSH terms: Gene Expression Profiling
  11. Yang X, Ikhwanuddin M, Li X, Lin F, Wu Q, Zhang Y, et al.
    Mar Biotechnol (NY), 2018 Feb;20(1):20-34.
    PMID: 29152671 DOI: 10.1007/s10126-017-9784-2
    The molecular mechanism underlying sex determination and gonadal differentiation of the mud crab (Scylla paramamosain) has received considerable attention, due to the remarkably biological and economic differences between sexes. However, sex-biased genes, especially non-coding genes, which account for these differences, remain elusive in this crustacean species. In this study, the first de novo gonad transcriptome sequencing was performed to identify both differentially expressed genes and long non-coding RNAs (lncRNAs) between male and female S. paramamosain by using Illumina Hiseq2500. A total of 79,282,758 and 79,854,234 reads were generated from ovarian and testicular cDNA libraries, respectively. After filtrating and de novo assembly, 262,688 unigenes were produced from both libraries. Of these unigenes, 41,125 were annotated with known protein sequences in public databases. Homologous genes involved in sex determination and gonadal development pathways (Sxl-Tra/Tra-2-Dsx/Fru, Wnt4, thyroid hormone synthesis pathway, etc.) were identified. Three hundred and sixteen differentially expressed unigenes were further identified between both transcriptomes. Meanwhile, a total of 233,078 putative lncRNAs were predicted. Of these lncRNAs, 147 were differentially expressed between sexes. qRT-PCR results showed that nine lncRNAs negatively regulated the expression of eight genes, suggesting a potential role in sex differentiation. These findings will provide fundamental resources for further investigation on sex differentiation and regulatory mechanism in crustaceans.
    Matched MeSH terms: Gene Expression Profiling
  12. Ho CL, Teoh S, Teo SS, Rahim RA, Phang SM
    Mar Biotechnol (NY), 2009 Jul-Aug;11(4):513-9.
    PMID: 19043658 DOI: 10.1007/s10126-008-9166-x
    Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison.
    Matched MeSH terms: Gene Expression Profiling
  13. Lim CH, Zainal NZ, Kanagasundram S, Zain SM, Mohamed Z
    PMID: 27177356 DOI: 10.1002/ajmg.b.32457
    Although major progress has been achieved in research and development of antipsychotic medications for bipolar disorder (BPD), knowledge of the molecular mechanisms underlying this disorder and the action of atypical antipsychotics remains incomplete. The levels of microRNAs (miRNAs)-small non-coding RNA molecules that regulate gene expression, including genes involved in neuronal function and plasticity-are frequently altered in psychiatric disorders. This study aimed to examine changes in miRNA expression in bipolar mania patients after treatment with asenapine and risperidone. Using a miRNA microarray, we analyzed miRNA expression in the blood of 10 bipolar mania patients following 12 weeks of treatment with asenapine or risperidone. Selected miRNAs were validated by using real-time PCR. A total of 16 miRNAs were differentially expressed after treatment in the asenapine group, 14 of which were significantly upregulated and the other two significantly downregulated. However, all three differentially expressed miRNAs in the risperidone group were downregulated. MiRNA target gene prediction and gene ontology analysis revealed significant enrichment for pathways associated with immune system response and regulation of programmed cell death and transcription. Our results suggest that candidate miRNAs may be involved in the mechanism of action of both antipsychotics in bipolar mania. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Gene Expression Profiling
  14. Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, et al.
    BMC Cancer, 2021 May 27;21(1):625.
    PMID: 34044804 DOI: 10.1186/s12885-021-08345-y
    BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood.

    METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR.

    RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV.

    CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.

    Matched MeSH terms: Gene Expression Profiling
  15. Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, et al.
    Elife, 2020 09 29;9.
    PMID: 32990596 DOI: 10.7554/eLife.57761
    New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favorable response toward immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.
    Matched MeSH terms: Gene Expression Profiling
  16. Azaman SNA, Satharasinghe DA, Tan SW, Nagao N, Yusoff FM, Yeap SK
    Genes (Basel), 2020 09 25;11(10).
    PMID: 32992970 DOI: 10.3390/genes11101131
    Chlorella is a popular microalga with robust physiological and biochemical characteristics, which can be cultured under various conditions. The exploration of the small RNA content of Chlorella could improve strategies for the enhancement of metabolite production from this microalga. In this study, stress was introduced to the Chlorella sorokiniana culture to produce high-value metabolites such as carotenoids and phenolic content. The small RNA transcriptome of C. sorokiniana was sequenced, focusing on microRNA (miRNA) content. From the analysis, 98 miRNAs were identified in cultures subjected to normal and stress conditions. The functional analysis result showed that the miRNA targets found were most often involved in the biosynthesis of secondary metabolites, followed by protein metabolism, cell cycle, and porphyrin and chlorophyll metabolism. Furthermore, the biosynthesis of secondary metabolites such as carotenoids, terpenoids, and lipids was found mostly in stress conditions. These results may help to improve our understanding of regulatory mechanisms of miRNA in the biological and metabolic process of Chlorella species. It is important and timely to determine the true potential of this microalga species and to support the potential for genetic engineering of microalgae as they receive increasing focus for their development as an alternative source of biofuel, food, and health supplements.
    Matched MeSH terms: Gene Expression Profiling
  17. Ting NC, Sherbina K, Khoo JS, Kamaruddin K, Chan PL, Chan KL, et al.
    Sci Rep, 2020 10 01;10(1):16296.
    PMID: 33004875 DOI: 10.1038/s41598-020-73170-5
    Evaluation of transcriptome data in combination with QTL information has been applied in many crops to study the expression of genes responsible for specific phenotypes. In oil palm, the mesocarp oil extracted from E. oleifera × E. guineensis interspecific hybrids is known to have lower palmitic acid (C16:0) content compared to pure African palms. The present study demonstrates the effectiveness of transcriptome data in revealing the expression profiles of genes in the fatty acid (FA) and triacylglycerol (TAG) biosynthesis processes in interspecific hybrids. The transcriptome assembly yielded 43,920 putative genes of which a large proportion were homologous to known genes in the public databases. Most of the genes encoding key enzymes involved in the FA and TAG synthesis pathways were identified. Of these, 27, including two candidate genes located within the QTL associated with C16:0 content, showed differential expression between developmental stages, populations and/or palms with contrasting C16:0 content. Further evaluation using quantitative real-time PCR revealed that differentially expressed patterns are generally consistent with those observed in the transcriptome data. Our results also suggest that different isoforms are likely to be responsible for some of the variation observed in FA composition of interspecific hybrids.
    Matched MeSH terms: Gene Expression Profiling
  18. Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, et al.
    Comput Biol Med, 2016 10 01;77:102-15.
    PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004
    Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
    Matched MeSH terms: Gene Expression Profiling
  19. Jamaluddin ND, Mohd Noor N, Goh HH
    Physiol Mol Biol Plants, 2017 Apr;23(2):357-368.
    PMID: 28461724 DOI: 10.1007/s12298-017-0429-8
    Genome-wide transcriptome profiling is a powerful tool to study global gene expression patterns in plant development. We report the first transcriptome profile analysis of papaya embryogenic callus to improve our understanding on genes associated with somatic embryogenesis. By using 3' mRNA-sequencing, we generated 6,190,687 processed reads and 47.0% were aligned to papaya genome reference, in which 21,170 (75.4%) of 27,082 annotated genes were found to be expressed but only 41% was expressed at functionally high levels. The top 10% of genes with high transcript abundance were significantly enriched in biological processes related to cell proliferation, stress response, and metabolism. Genes functioning in somatic embryogenesis such as SERK and LEA, hormone-related genes, stress-related genes, and genes involved in secondary metabolite biosynthesis pathways were highly expressed. Transcription factors such as NAC, WRKY, MYB, WUSCHEL, Agamous-like MADS-box protein and bHLH important in somatic embryos of other plants species were found to be expressed in papaya embryogenic callus. Abundant expression of enolase and ADH is consistent with proteome study of papaya somatic embryo. Our study highlights that some genes related to secondary metabolite biosynthesis, especially phenylpropanoid biosynthesis, were highly expressed in papaya embryogenic callus, which might have implication for cell factory applications. The discovery of all genes expressed in papaya embryogenic callus provides an important information into early biological processes during the induction of embryogenesis and useful for future research in other plant species.
    Matched MeSH terms: Gene Expression Profiling
  20. Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH
    J Tissue Eng Regen Med, 2018 02;12(2):e881-e893.
    PMID: 28079995 DOI: 10.1002/term.2401
    Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p 
    Matched MeSH terms: Gene Expression Profiling
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links