Displaying publications 201 - 220 of 310 in total

Abstract:
Sort:
  1. Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR
    Front Pharmacol, 2019;10:1295.
    PMID: 31749703 DOI: 10.3389/fphar.2019.01295
    Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
  2. Murugan DD, Md Zain Z, Choy KW, Zamakshshari NH, Choong MJ, Lim YM, et al.
    Front Pharmacol, 2019;10:1624.
    PMID: 32116666 DOI: 10.3389/fphar.2019.01624
    Increased oxidative stress by hyperglycemia is a major cause of vascular complications in diabetes. Bird's nest, which is made from the saliva of swiftlets has both medicinal and nutritional values dated back to ancient China. However, its role in improving endothelial dysfunction due to diabetes is yet to be elucidated. The present study examined the protective effect and mechanism of action of the aqueous extract of hydrolyzed edible bird nest (HBN) on endothelium in models of diabetes, in vitro and in vivo. Male db/m+ and db/db mice were orally administered with or without HBN and glibenclamide for 28 days, followed by vascular reactivity studies in mouse aortas. Human umbilical vein endothelial cells (HUVECs) and isolated mouse aorta from C57BL/6J were treated with high glucose (HG), HBN, sialic acid (SA), glibenclamide, and apocynin, respectively. The effects of HBN on reactive oxygen species (ROS) production and nitric oxide (NO) bioavailability were assessed by Western blot, 2',7'-dichlorofluorescin-diacetate (DCF-DA), and 4-amino-5-methylamino-2',7' difluorofluorescein (DAF-FM DA) in HUVECs, isolated mouse aorta, and db/db diabetic mice. HBN significantly reversed the endothelial dysfunction in diabetic mice and isolated mouse aorta. HBN normalized ROS over-production of NOX2 and nitrotyrosine, reversed the reduction of anti-oxidant marker, SOD-1 as well as restored NO bioavailability in both HUVECs challenged with HG and in db/db diabetic mice. Similarly, HG-induced elevation of oxidative stress in HUVECs were reversed by SA, glibenclamide, and apocynin. This attests that HBN restores endothelial function and protects endothelial cells against oxidative damage induced by HG in HUVECs, isolated mouse aorta, and db/db diabetic mice via modulating ROS mechanism, which subsequently increases NO bioavailability. This result demonstrates the potential role of HBN in preserving endothelial function and management of micro- or macrovascular complications in diabetes.
  3. Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ
    Polymers (Basel), 2021 Oct 14;13(20).
    PMID: 34685289 DOI: 10.3390/polym13203530
    In this study, a novel cellulose/Ag/TiO2 nanocomposite was successfully synthesized via the hydrothermal method. The cellulose extracted from oil palm empty fruit bunch (OPEFB) could address the disposal issue created by OPEFB biomass. Characterization studies such as FESEM, EDX, HRTEM, XRD, FTIR, UV-Vis DRS, PL, XPS, and surface analysis were conducted. It was observed that the incorporation of cellulose could hinder the agglomeration, reduce the band gap energy to 3 eV, increase the specific surface area to 150.22 m3/g, and lower the recombination rate of the generated electron-hole pairs compared to Ag/TiO2 nanoparticles. The excellent properties enhance the sonocatalytic degradation efficiency of 10 mg/L Congo red (up to 81.3% after 10 min ultrasonic irradiation) in the presence of 0.5 g/L cellulose/Ag/TiO2 at 24 kHz and 280 W. The improvement of catalytic activity was due to the surface plasmon resonance effect of Ag and numerous hydroxyl groups on cellulose that capture the holes, which delay the recombination rate of the charge carriers in TiO2. This study demonstrated an alternative approach in the development of an efficient sonocatalyst for the sonocatalytic degradation of Congo red.
  4. Keng ZY, Saw YM, Thung SC, Chong WW, Albert A, Kariya T, et al.
    Sci Rep, 2021 02 15;11(1):3812.
    PMID: 33589659 DOI: 10.1038/s41598-021-83168-2
    Non-communicable diseases (NCDs) are an increasing problem worldwide, including in Malaysia. National surveys have been performed by the government but had poor coverage in east Malaysia, particularly in rural regions. This study aimed to describe the achievement of target therapeutic outcomes in the control of diabetes mellitus (DM), hypertension (HPT), and dyslipidemia (DLP) among diabetic patients in rural east Malaysia. A cross-sectional study was conducted among DM patients who visited the NCDs clinic in Lundu Hospital, Sarawak, Malaysia, from Jan to March 2016. In total, 214 patients (male, 37.9%; female, 62.1%) were recruited using a systemic sampling method. Multiple logistic regression models were applied to estimate the adjusted odds ratio (AOR) and confidence interval (CI) for the target therapeutic achievement in the control of DM, HPT, and DLP. Compared to the national average, therapeutic target achievement in Lundu was higher for DM (43.0% vs. 23.8%), equal for DLP (35.8% vs. 37.8%) but lower for HPT (30.9% vs. 47.9%). DM patients who had at least yearly HbA1c monitoring (AOR 2.30, 95% CI 1.04-5.06, P = 0.039), and those 58.7 years or older (AOR 2.50, 95% CI 1.32-4.74, P = 0.005) were more likely to achieve the therapeutic target for DM. Health promotion and public education regarding HPT needs to be emphasized in rural Malaysia. HbA1c monitoring at least once a year was one of the important factors associated with achieving DM control in rural east Malaysia. Accessibility to HbA1c tests and monitoring should be ensured for diabetic patients.
  5. Ho KL, Yong PH, Wang CW, Kuppusamy UR, Ngo CT, Massawe F, et al.
    J Integr Med, 2022 Feb 02.
    PMID: 35153134 DOI: 10.1016/j.joim.2022.02.002
    Peperomia pellucida (L.) Kunth is a medicinal plant used to manage inflammatory illnesses such as conjunctivitis, and gastrointestinal and respiratory tract disorders in tropical and subtropical regions. However, little is known about its pharmacological mechanism of action against eye diseases. This review aims to critically discuss the phytochemistry, pharmacology and toxicology of P. pellucida as well as its roles in the treatment of cataract, glaucoma and diabetic retinopathy. Recent developments in the uses of P. pellucida for healthcare and nutraceutical products by the pharmaceutical industry are also covered in this review. For this review, a literature search was performed with PubMed, ScienceDirect, SciFinder Scholar and Scopus databases, using relevant keywords. Among the various phytochemicals identified from P. pellucida, β-caryophyllene, carotol, dillapiole, ellagic acid, pellucidin A, phytol and vitexin exhibit strong pharmacological activities within the mitogen-activated protein kinase and nuclear factor-κB signalling pathways in inflammatory eye diseases. The antihypertensive, anti-inflammatory, antioxidant, antihyperglycemic and anti-angiogenic activities displayed by P. pellucida extracts in many in vitro, in vivo and clinical studies suggest its potential role in the management of inflammatory eye diseases. P. pellucida extract was non-toxic against normal cell lines but displayed mild toxicity in animal models. The growing public interest in P. pellucida has inspired the nutraceutical and pharmaceutical industries to process the plant into health products. Although the potential pharmacological mechanisms against eye diseases have been summarized, further studies of the interactions among constituent phytochemicals from P. pellucida within various signalling pathways shall support the use of the plant as an alternative therapeutic source.
  6. Ho WY, Yeap S, Liang WS, Beh BK, Mohamad N, Alitheen NB
    Pak J Pharm Sci, 2015 Jan;28(1):15-22.
    PMID: 25553678
    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spray-dried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 μg/ml and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties.
  7. Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL
    Chemosphere, 2022 Mar;291(Pt 3):133035.
    PMID: 34848231 DOI: 10.1016/j.chemosphere.2021.133035
    Heavy metal contamination in water bodies is currently in an area of greater concern due to the adverse effects on human health. Despite the good adsorption performance of biochar, various modifications have been performed on the pristine biochar to further enhance its adsorption capability, at the same time overcome the difficulty of particles separation and mitigate the secondary pollution issues. In this review, the feasibility of chitosan-modified magnetic biochar for heavy metal removal from aqueous solution is evaluated by critically analysing existing research. The effective strategies that applied to introduce chitosan and magnetic substances into the biochar matrix are systematically reviewed. The physicochemical changes of the modified-biochar composite are expounded in terms of surface morphology, pore properties, specific surface area, surface functional groups and electromagnetism. The detailed information regarding the adsorption performances of various modified biochar towards different heavy metals and their respective underlying mechanisms are studied in-depth. The current review also analyses the kinetic and isotherm models that dominated the adsorption process and summarizes the common models that fitted well to most of the experimental adsorption data. Moreover, the operating parameters that affect the adsorption process which include solution pH, temperature, initial metal concentration, adsorbent dosage, contact time and the effect of interfering ions are explored. This review also outlines the stability of modified biochar and their regeneration rate after cycles of heavy metal removal process. Lastly, constructive suggestions on the future trends and directions are provided for better research and development of chitosan-modified magnetic biochar.
  8. Zhang H, Liao W, Chao W, Chen Q, Zeng H, Wu C, et al.
    J Dermatol, 2008 Sep;35(9):555-61.
    PMID: 18837699 DOI: 10.1111/j.1346-8138.2008.00523.x
    Sebaceous gland diseases are a group of common dermatological diseases with multiple causes. To date, a systematic report of the risk factors for sebaceous gland diseases in adolescents has not been published. The aim of this study was to assess the prevalence and risk factors for certain sebaceous gland diseases (seborrhea, seborrheic dermatitis, acne, androgenetic alopecia and rosacea) and their relationship to gastrointestinal dysfunction in adolescents. From August-October, 2002-2005, a questionnaire survey was carried out to obtain epidemiological data about sebaceous gland diseases. Using random cluster sampling, 13 215 Han adolescents aged 12-20 years were recruited from four countries or districts (Macau; Guangzhou, China; Malaysia; and Indonesia). The statistical software SPSS ver. 13.0 was used to analyze the data. The prevalence of seborrhea, seborrheic dermatitis, acne, androgenetic alopecia and rosacea was 28.27%, 10.17%, 51.03%, 1.65% and 0.97%, respectively. Based on multivariate logistic regression analysis, the risk factors for sebaceous gland diseases included: age; duration of local residency; halitosis; gastric reflux; abdominal bloating; constipation; sweet food; spicy food; family history of acne; late night sleeping on a daily basis; excessive axillary, body and facial hair; excessive periareolar hair; and anxiety. There was a statistically significant difference in the prevalence of gastrointestinal symptoms (halitosis; gastric reflux; abdominal bloating; constipation) between patients with and without sebaceous gland diseases (chi(2) = 150.743; P = 0.000). Gastrointestinal dysfunction is an important risk factor for diseases of the sebaceous glands and is correlated with their occurrence and development.
  9. Choy KW, Lau YS, Murugan D, Vanhoutte PM, Mustafa MR
    J. Pharmacol. Exp. Ther., 2018 03;364(3):420-432.
    PMID: 29259041 DOI: 10.1124/jpet.117.245217
    Inflammatory injury of the endothelium leads to apoptosis and endothelial dysfunction. The current study explored the effect and mechanisms of paeonol in inflammation-induced apoptosis and endothelial dysfunction induced by lipopolysaccharides (LPSs). The effects of paeonol on LPS-induced inflammatory injury were assessed by Western blotting, flow cytometry and reactive oxygen species (ROS) measurement in human umbilical vein endothelial cells (HUVECs) and C57BL/6J mice. Vascular reactivity of isolated mouse aortae was examined using wire myographs. The exposure of HUVECs to LPS increased the protein presence of Toll-like receptor 4 (TLR4), bone morphogenic protein 4 (BMP4), BMP receptor type 1A, nicotinamide adenine dinucleotide phosphate oxidase subunit 2, mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS), and cleaved caspase 3, as well as decreased it in phosphorylated endothelial nitric oxide synthase; these effects were prevented by treatment with paeonol. Similarly, cotreatment with paeonol reversed BMP4-induced apoptosis in HUVECs. Relaxation in response to the endothelium-dependent vasodilator acetylcholine were impaired in mouse aortae after exposure to LPSs; this endothelial dysfunction was reversed by cotreatment with paeonol, noggin (a BMP4 inhibitor), TAK242 (TLR4 antagonist), apocynin (an ROS scavenger), MAPK inhibitors, and AG (an iNOS inhibitor). BMP4 small interfering RNAs (siRNAs) abolished LPS-induced upregulation of BMP4 and cleaved caspase 3 protein, but not in cells treated with TLR4 siRNA and vice versa. The silencing of TLR4 and BMP4 abolished the inhibitory effects of paeonol on LPS-induced activation of cleaved caspase 3. The present results demonstrate that paeonol reduces LPS-induced endothelial dysfunction and apoptosis by inhibiting TLR4 and BMP4 signaling independently.
  10. Lau YS, Mustafa MR, Choy KW, Chan SMH, Potocnik S, Herbert TP, et al.
    Sci Rep, 2018 01 29;8(1):1818.
    PMID: 29379034 DOI: 10.1038/s41598-018-19584-8
    Endoplasmic reticulum (ER) stress has been implicated in the development of hypertension 3 through the induction of endothelial impairment. As 3',4'-dihydroxyflavonol (DiOHF) 4 reduces vascular injury caused by ischaemia/reperfusion or diabetes, and flavonols have been demonstrated to attenuate ER stress, we investigated whether DiOHF can protect mice from ER stress-induced endothelial dysfunction. Male C57BLK/6 J mice were injected with tunicamycin to induce ER stress in the presence or absence of either DiOHF or tauroursodeoxycholic acid (TUDCA), an inhibitor of ER stress. Tunicamycin elevated blood pressure and impaired endothelium-dependent relaxation. Moreover, in aortae there was evidence of ER stress, oxidative stress and reduced NO production. This was coincident with increased NOX2 expression and reduced phosphorylation of endothelial nitric oxide synthase (eNOS) on Ser1176. Importantly, the effects of tunicamycin were significantly ameliorated by DiOHF or TUDCA. DiOHF also inhibited tunicamycin-induced ER stress and apoptosis in cultured human endothelial cells (HUVEC). These results provide evidence that ER stress is likely an important initiator of endothelial dysfunction through the induction of oxidative stress and a reduction in NO synthesis and that DiOHF directly protects against ER stress- induced injury. DiOHF may be useful to prevent ER and oxidative stress to preserve endothelial function, for example in hypertension.
  11. Diana K, Teh MS, Islam T, Lim WL, Beh ZY, Taib NAM
    World J Surg, 2023 Mar;47(3):564-572.
    PMID: 36599951 DOI: 10.1007/s00268-022-06881-7
    INTRODUCTION: Regional analgesia techniques have been increasingly used for post-operative pain management following mastectomy. We aim to evaluate analgesic benefits of pectoral nerve (PECS2) block incorporated as part of the enhanced recovery after surgery (ERAS) protocol in patients undergoing mastectomy in University Malaya Medical Centre, Malaysia.

    MATERIAL AND METHODS: A single centre, cohort study evaluating 335 women who have undergone unilateral mastectomy between January 2017 and March 2020 in Malaysia. Regional anaesthesia were given pre-operatively via ultrasound guided pectoral and intercostal nerves block (PECSII).

    RESULTS: Utilization of regional anaesthesia increased from 11% in 2017 to 43% in 2020. Types and duration of surgeries were comparable. Opiod consumption was 3 mg lower in those who had PECS2 block ((27 [24-30] mg), in comparison with those who received general anaesthesia only (30 [26-34] mg), p 

  12. Pang YL, Law ZX, Lim S, Chan YY, Shuit SH, Chong WC, et al.
    Environ Sci Pollut Res Int, 2021 Jun;28(21):27457-27473.
    PMID: 33507503 DOI: 10.1007/s11356-020-12251-4
    The conversion of carbon-rich biomass into valuable material is an environmental-friendly approach for its reutilization. In this study, coconut shell-derived biochar, graphitic carbon nitride (g-C3N4), g-C3N4/biochar, titanium dioxide (TiO2)/biochar, zinc oxide (ZnO)/biochar, and ferric oxide (Fe2O3)/biochar were synthesized and characterized by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), surface area analysis, UV-Vis diffuse reflectance spectroscopy (DRS), and zeta potential analysis. The g-C3N4 or metal oxide particles were found to be well-distributed on the coconut shell-derived biochar with the improvement in thermal stability and enlargement of specific surface area. A great reduction in band gap energy was observed in the composite materials after incorporating with the biochar. Among different biochar composites, g-C3N4/biochar was found to have the highest photocatalytic activity. The interactive effect of parameters such as catalyst dosage, peroxymonosulfate (PMS) oxidant dosage, and solution pH on the photocatalytic degradation of methyl orange was investigated using the response surface methodology (RSM). The highest photocatalytic degradation efficiency (96.63%) was achieved at catalyst dosage of 0.75 g/L, oxidant dosage of 0.6 mM, and solution pH 3 after 30 min.
  13. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC
    Environ Sci Pollut Res Int, 2020 Jan;27(3):2522-2565.
    PMID: 31865580 DOI: 10.1007/s11356-019-07193-5
    Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
  14. Chan YY, Pang YL, Lim S, Lai CW, Abdullah AZ, Chong WC
    Environ Sci Pollut Res Int, 2020 Oct;27(28):34675-34691.
    PMID: 31628641 DOI: 10.1007/s11356-019-06583-z
    Nowadays, the current synthesis techniques used in industrial production of nanoparticles have been generally regarded as nonenvironmentally friendly. Consequently, the biosynthesis approach has been proposed as an alternative to reduce the usage of hazardous chemical compounds and harsh reaction conditions in the production of nanoparticles. In this work, pure, iron (Fe)-doped and silver (Ag)-doped zinc oxide (ZnO) nanoparticles were successfully synthesized through the green route using Clitoria ternatea Linn. The optical, chemical, and physical properties of the biosynthesized ZnO nanoparticles were then analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and surface analysis. The biosynthesized ZnO nanoparticles were crystallized with a hexagonal wurtzite structure and possessed smaller particle sizes than those of commercially or chemically produced samples. The existence of biomolecules to act as reducing and stabilizing agents from C. ternatea Linn aqueous extract was confirmed using FTIR analysis. The biosynthesized ZnO nanoparticles mainly comprised of negatively charged groups and responsible for moderately stable dispersion of the nanoparticles. All these properties were favorable for the sonocatalytic degradation of Congo red. Sonocatalytic activity of ZnO nanoparticles was studied through the degradation of 10 mg/L Congo red using ultrasonic irradiation at 45 kHz and 80 W. The results showed that the sonocatalytic degradation efficiency of Congo red in the presence of biosynthesized ZnO nanoparticles prepared at 50 °C for 1 h could achieve 88.76% after 1 h. The sonocatalytic degradation efficiency of Congo red in the presence of Ag-doped ZnO was accelerated to 94.42% after 10 min which might be related to the smallest band gap energy (3.02 eV) and the highest specific surface area (10.31 m2/g) as well as pore volume (0.0781 cm3/g). Lastly, the biosynthesized ZnO nanoparticles especially Ag-doped ZnO offered significant antibacterial potential against Escherichia coli which indicated its ability to inhibit the normal growth and replication of bacterial cells. These results affirmed that the biosynthesized ZnO nanoparticles could be used as an alternative to the current chemical compounds and showed a superior sonocatalytic activity toward degradation of Congo red.
  15. Ali HS, Zeqiraj V, Lin WL, Law SH, Yusop Z, Bare UAA, et al.
    Environ Sci Pollut Res Int, 2019 04;26(11):10446-10456.
    PMID: 30891699 DOI: 10.1007/s11356-019-04670-9
  16. Jan AA, Lai FW, Siddique J, Zahid M, Ali SEA
    Environ Sci Pollut Res Int, 2023 Mar;30(13):36521-36532.
    PMID: 36547839 DOI: 10.1007/s11356-022-24842-4
    Recent years have seen a burgeoning interest in the involvement of corporate sustainability (CS) in sustainable development (SD), yet both concepts are fewer and newer in the academic field. This study aims to present a thorough bibliometric analysis that provides fresh new insights on the subject. Using VOSviewer software, this study analyzed and visualized 1214 documents for the period 2005-2021 in the Web of Science (WoS) database. The findings of the study indicate that the co-theme CS and SD are lasting but thriving research subjects. The findings also revealed that authors from the USA published the highest number of articles followed by the UK, Spain, Italy, and Germany. The co-authorship network showed strong links between these countries. Three main clusters are identified based on research titles frequently co-cited and have significant co-citation connections. In general, this study provides valuable insight into the current status and future trends for research on SDGs. The outcome of the study could be useful to policymakers, regulators, sustainability practitioners, and researchers in understanding the key research areas, influential authors, institutions, and countries actively involved in the field. Considering the involvement of corporate sustainability in sustainable development is a useful and informative endeavor for all community actors. To the best of the authors' knowledge, this is the first comprehensive study that presents the holistic picture of CS and SD-related research to identify the knowledge map between the two subjects.
  17. Teoh KW, Ng CM, Chong CW, Bell JS, Cheong WL, Lee SWH
    PMID: 36792169 DOI: 10.1136/bmjdrc-2022-003203
    The prevalence of pre-diabetes is increasing globally, affecting an estimated 552 million people by 2030. While lifestyle interventions are the first line of defense against progression toward diabetes, information on barriers toward pre-diabetes management and how to overcome these barriers are scarce. This systematic review describes the publics' and healthcare professionals' knowledge, attitude and practice (KAP) toward pre-diabetes and determines the barriers toward pre-diabetes management. A systematic search for studies examining KAP towards pre-diabetes was conducted in six databases from inception to September 2022. Studies that quantitatively assessed at least two KAP elements using questionnaires were included. The quality of studies was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Barriers and enablers were identified and mapped onto the Capability, Motivation, and Behaviour model to identify factors that influence behavior change. Twenty-one articles that surveyed 8876 participants were included in this review. Most of the reviews (n=13) were directed to healthcare professionals. Overall, positive attitudes toward diabetes prevention efforts were observed, although there were still knowledge deficits and poor behavior toward pre-diabetes management. Barriers and enablers were detected at patients (eg, goals and intention), healthcare professionals (eg, clinical judgement) and system (eg, access and resources) levels. The use of different survey instruments to assess KAP prevented a head-to-head comparison between studies. Most studies conducted among patients were from middle-income countries, while among healthcare professionals (HCPs) were from high-income countries, which may produce some biasness. Nevertheless, the development of pre-diabetes intervention should focus on: (1) increasing knowledge on pre-diabetes and its management; (2) imparting practical skills to manage pre-diabetes; (3) providing resources for lifestyle management; (4) improving the accessibility of lifestyle management programs; and (5) other HCPs and human support to pre-diabetes management.
  18. Chook JB, Teo WL, Ngeow YF, Tee KK, Ng KP, Mohamed R
    J Clin Microbiol, 2015 Jun;53(6):1831-5.
    PMID: 25788548 DOI: 10.1128/JCM.03449-14
    Hepatitis B virus (HBV) has been divided into 10 genotypes, A to J, based on an 8% nucleotide sequence divergence between genotypes. The conventional practice of using a single set of primers to amplify a near-complete HBV genome is hampered by its low analytical sensitivity. The current practice of using overlapping conserved primer sets to amplify a complete HBV genome in a clinical sample is limited by the lack of pan-primers to detect all HBV genotypes. In this study, we designed six highly conserved, overlapping primer sets to cover the complete HBV genome. We based our design on the sequences of 5,154 HBV genomes of genotypes A to I downloaded from the GenBank nucleotide database. These primer sets were tested on 126 plasma samples from Malaysia, containing genotypes A to D and with viral loads ranging from 20 to >79,780,000 IU/ml. The overall success rates for PCR amplification and sequencing were >96% and >94%, respectively. Similarly, there was 100% amplification and sequencing success when the primer sets were tested on an HBV reference panel of genotypes A to G. Thus, we have established primer sets that gave a high analytical sensitivity for PCR-based detection of HBV and a high rate of sequencing success for HBV genomes in most of the viral genotypes, if not all, without prior known sequence data for the particular genotype/genome.
  19. Kuan WP, Tam LS, Wong CK, Ko FW, Li T, Zhu T, et al.
    J Rheumatol, 2010 Feb;37(2):257-64.
    PMID: 20032101 DOI: 10.3899/jrheum.090769
    OBJECTIVE:
    To assess whether serum levels of CC and CXC chemokines correlate with disease activity in patients with rheumatoid arthritis (RA), and to determine whether these effects predict clinical response.

    METHODS:
    Serum levels of the chemokines CC (CCL2, CCL5) and CXC (CXCL8, CXCL9, CXCL10) were quantified at baseline and after 12 weeks of treatment with disease-modifying antirheumatic drugs or biologic agents in 28 patients using flow cytometry. Serum from 40 healthy individuals was collected for comparison at baseline. Response to treatment was classified according to the European League Against Rheumatism (EULAR) response criteria. Remission of disease was defined as a Disease Activity Score < 2.6.

    RESULTS:
    The baseline serum concentrations of CC and CXC chemokines were significantly elevated in patients with active RA compared to healthy controls (p < 0.05) except for CCL2. Significant improvement in all disease activity measurements was observed after 12 weeks of treatment. Seventeen (60.7%) patients achieved good to moderate response based on the EULAR response criteria, and 5 (17.9%) patients achieved remission. The improvement in clinical activity in patients with RA was accompanied by a significant reduction in the serum concentration of CXCL9 and CXCL10 (p < 0.001). A significant reduction in the serum level of CXCL10 was also observed in the group that achieved EULAR response. Serum concentration of CCL5 remained significantly elevated in patients with RA (n = 5) who achieved remission compared to the healthy controls (p < 0.05).

    CONCLUSION:
    Serum concentration of CXCL9 and CXCL10 may serve as sensitive biomarkers for disease activity in patients with RA.
    Study done in Hong Kong
  20. Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB
    J Mater Chem B, 2024 Feb 14;12(7):1677-1705.
    PMID: 38288615 DOI: 10.1039/d3tb02485g
    Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links