Displaying publications 221 - 240 of 283 in total

Abstract:
Sort:
  1. Apalasamy YD, Rampal S, Salim A, Moy FM, Bulgiba A, Mohamed Z
    Mol Biol Rep, 2014 May;41(5):2917-21.
    PMID: 24449366 DOI: 10.1007/s11033-014-3147-0
    Studies have shown that single-nucleotide polymorphisms (SNPs) on the ADIPOQ gene have been linked with obesity and with adiponectin levels in various populations. Here, we aimed to investigate the association of ADIPOQ rs17366568 and rs3774261 SNPs with obesity and with adiponectin levels in Malaysian Malays. Obesity parameters and adiponectin levels were measured in 574 subjects. Genotyping was performed using real-time polymerase chain reaction and Sequenom MassARRAY. A significant genotypic association was observed between ADIPOQ rs17366568 and obesity. The frequencies of AG and AA genotypes were significantly higher in the obese group (11%) than in the non-obese group (5%) (P=0.024). The odds of A alleles occurring among the obese group were twice those among the non-obese group (odds ratio 2.15; 95% confidence interval 1.13-4.09). However, no significant association was found between allelic frequencies of ADIPOQ rs17366568 and obesity after Bonferroni correction (P>0.025) or between ADIPOQ rs3774261 and obesity both at allelic and genotypic levels. ADIPOQ SNPs were not significantly associated with log-adiponectin levels. GA, GG, and AG haplotypes of the ADIPOQ gene were not associated with obesity. We confirmed the previously reported association of ADIPOQ rs17366568 with the risk of obesity. ADIPOQ SNPs are not important modulators of adiponectin levels in this population.
    Matched MeSH terms: Haplotypes
  2. Nazree NE, Loke AC, Zainal NZ, Mohamed Z
    Asia Pac Psychiatry, 2015 Mar;7(1):72-7.
    PMID: 24376086 DOI: 10.1111/appy.12118
    Numerous association studies of candidate genes studies with major depressive disorder (MDD) have been conducted for many years; however, the evidence of association between genes and the risk of developing MDD still remains inconclusive. In this study, we aimed to investigate the association between the tryptophan hydroxylase 2 (TPH2) gene and MDD in three ethnic groups (Malay, Chinese and Indian) within the Malaysian population.
    Matched MeSH terms: Haplotypes
  3. Olival KJ, Dick CW, Simmons NB, Morales JC, Melnick DJ, Dittmar K, et al.
    Parasit Vectors, 2013 Aug 08;6:231.
    PMID: 23924629 DOI: 10.1186/1756-3305-6-231
    BACKGROUND: Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date.

    METHODS: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.

    RESULTS: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.

    CONCLUSIONS: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

    Matched MeSH terms: Haplotypes
  4. López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, et al.
    Antonie Van Leeuwenhoek, 2013 Nov;104(5):657-74.
    PMID: 23884864 DOI: 10.1007/s10482-013-9975-4
    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.
    Matched MeSH terms: Haplotypes
  5. Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC, et al.
    PLoS One, 2013;8(5):e64827.
    PMID: 23717663 DOI: 10.1371/journal.pone.0064827
    Carbamazepine (CBZ) is used as the first line of treatment of Complex Partial Seizures (CPS) in the Epilepsy Clinic, Neurology Department of Kuala Lumpur Hospital (KLH). More than 30% of the patients remain drug resistant to CBZ mono-therapy. CBZ is transported by the P-glycoprotein (P-gp). The P-gp encoded by the ABCB1 and ABCC2 genes are expressed in drug resistant patients with epilepsy. A few studies have shown significant association between CBZ resistant epilepsy and Linkage Disequilibrium (LD) with adjacent polymorphisms of these genes. Our study is aimed at determining the correlation between patients' response to CBZ mono-therapy to Single Nucleotide Polymorphisms G2677T and C3435T of the ABCB1 gene as well as G1249A and -24C>T of the ABCC2 gene.
    Matched MeSH terms: Haplotypes
  6. Chiu YH, Chang YC, Chang YH, Niu DM, Yang YL, Ye J, et al.
    J Hum Genet, 2012 Feb;57(2):145-52.
    PMID: 22237589 DOI: 10.1038/jhg.2011.146
    The enzyme 6-pyruvoyl-tetrahydropterin synthase (PTPS, gene symbol: PTS) is involved in the second step of the de novo biosynthesis of tetrahydrobiopterin (BH4), which is a vital cofactor of nitric oxide synthases and three types of aromatic amino acid hydroxylases; the latter are important enzymes in the production of neurotransmitters. We conducted a study of PTS mutations in East Asia, including Taiwan, Mainland China, Japan, South Korea, the Philippines, Thailand and Malaysia. A total of 43 mutations were identified, comprising 22 previously reported mutations and 21 new discovered mutations. Among these, the c.155A>G, c.259C>T, c. 272A>G, c.286G>A and c.84-291A>G mutations were the most common PTS mutations in East Asia, while the c.58T>C and c.243G>A mutations were, respectively, specific to Filipinos and Japanese originating from Okinawa. Further studies demonstrated that each of the mutations listed above was in linkage disequilibrium to a specific allele of polymorphic microsatellite marker, D11S1347. These results suggest the presence of founder effects that have affected these frequent mutations in East Asia populations. In this context, D11S1347 should become one of the most reliable polymorphic markers for use in prenatal diagnosis among PTPS deficient families, especially where mutations are yet to be identified.
    Matched MeSH terms: Haplotypes
  7. Lim JS, Singh O, Ramasamy RD, Ramasamy S, Subramanian K, Lee EJ, et al.
    Drug Metab. Pharmacokinet., 2010;25(6):616-23.
    PMID: 20930417
    CYP1A2 play an important role in the metabolism of many carcinogens and clinically important drugs. CYP1A2 activity has been found to be influenced by the presence of polymorphic variants which were reported to display wide interethnic variation. This study investigates the frequency distribution and linkage disequilibrium patterns of CYP1A2 genetic polymorphisms, and characterize their haplotype structures in three healthy Asian populations in Singapore (Chinese, Malay, and Indian). The entire CYP1A2 gene was screened in 126 healthy subjects from all three ethnic groups (N=42 each). A total of 25 polymorphisms was identified, of which nine were novel. The polymorphisms, -2467delT and -163C>A were detected at high frequencies in all Asian ethnic groups. Significant interethnic differences were observed in the genotypic frequency distribution of IVS2-99G>A (P<0.01) and 1548C>T (P=0.05) across the three ethnic groups while -163C>A (P=0.02) was found to differ between Chinese and Malays. Haplotype analyses revealed four to six major haplotypes in each ethnic population which accounted for more than 60% of the cumulative haplotype frequencies. Future studies should be done to investigate the functional roles of these haplotypes.
    Matched MeSH terms: Haplotypes
  8. Edinur HA, Zafarina Z, Spínola H, Nurhaslindawaty AR, Panneerchelvam S, Norazmi MN
    Hum Immunol, 2009 Jul;70(7):518-26.
    PMID: 19364514 DOI: 10.1016/j.humimm.2009.04.003
    In this study, human leukocyte antigen (HLA) class I and II were examined through sequence-specific primer typing in 176 unrelated individuals from six Malay subethnic groups of Peninsular Malaysia: Kelantan (n = 25), Minangkabau (34), Jawa (30), Bugis (31), Banjar (33), and Rawa (23). The most common HLA alleles in all groups were A*24 (26-41%), Cw*07 (24-32%), B*15 (22-30%), DRB1*12 (15-36%), and DQB1*03 (25-51%). The Malay subethnic groups studied demonstrated a close relationship to each other and to other Asian populations, despite specific differences between them. Banjar, Bugis, and Jawa Malays demonstrated no significant difference from each other, which could be a result of their related origin from the islands around the Java Sea. These three Malay subethnic groups were then collapsed into one group, which also helped to increase the sample number and sharpen statistical results. Minangkabau and Rawa Malays exhibited high similarities in allele group and haplotype frequencies, which could be a consequence of their common origin from Sumatera. Kelantan Malays, in addition to their statistically significant differences compared with the other groups, also exhibited differences on the most frequent haplotypes, which are almost absent in the other subethnic groups studied.
    Matched MeSH terms: Haplotypes
  9. Dhaliwal JS, Shahnaz M, Azrena A, Irda YA, Salawati M, Too CL, et al.
    Tissue Antigens, 2010 Feb;75(2):166-9.
    PMID: 20196825 DOI: 10.1111/j.1399-0039.2009.01410.x
    One hundred and fifty-eight Kadazan, Iban and Bidayuh individuals registered with the Malaysian Marrow Donor Registry were typed for human leukocyte antigen (HLA)-A, HLA-B and HLA-DR. Six, seven and eight HLA-A alleles as well as 13, 15 and 16 HLA-B alleles were detected in the Kadazan, Bidayuh and Iban, respectively. The most common HLA-A allele in all three groups was HLA-A*24 with a frequency of 0.456, 0.490 and 0.422 in the Kadazan, Bidayuh and Iban, respectively. The most common HLA-B allele detected in the Kadazan was HLA-B*40 with a frequency of 0.333; for the Bidayuh and the Iban it was HLA-B*15 with a frequency of 0.460 and 0.275, respectively. The HLA-DR allele with the highest frequency in the Kadazan was HLA-DR*1502 with a frequency of 0.500. In the Iban and the Bidayuh, HLA-DRB1*1202 was the most common DR allele with frequencies of 0.235 and 0.310, respectively. The two most common haplotypes for the Kadazan are A*34-B*38-DR*1502 and A*24-B*40-DR*0405, whereas for the Bidayuh they are A*24-B*15-DR*1602 and A*24-B*35-DR*1202 and for the Iban they are A*34-*B15-DR*1502 and A*24-B*15-DR*1202.
    Matched MeSH terms: Haplotypes
  10. Delgado AM, Cook JM
    BMC Evol. Biol., 2009;9:49.
    PMID: 19257899 DOI: 10.1186/1471-2148-9-49
    Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.
    Matched MeSH terms: Haplotypes
  11. Hee CS, Gun SC, Naidu R, Das Gupta E, Somnath SD, Radhakrishnan AK
    Mod Rheumatol, 2007;17(5):429-35.
    PMID: 17929139 DOI: 10.1007/s10165-007-0612-9
    In this study, three single nucleotide polymorphisms (SNPs) located within the promoter of the human interleukin (IL)-10 gene [rs1800896 (position: -1087G>A), rs1800871 (position: -824C>T) and rs1800872 (position: -597C>A)] were investigated in 84 rheumatoid arthritis (RA) patients and 95 age- and sex-matched healthy subjects using polymerase chain reaction-restriction fragment length polymorphism method. Production of IL-10 by peripheral blood lymphocytes from the RA patients and healthy subjects cultured in the presence of Concanavalin A (Con A) was determined by using enzyme-linked immunosorbent assay. The results show that the distribution of the IL-10 genotypes did not differ significantly between RA patients and healthy subjects (P>0.05). However, a significant difference was observed in allele frequencies of -824CT, -824TT, -597CA, and -597AA between the RA patients and healthy volunteers (P=0.04). The -1087A/-824T/-597A (ATA) haplotype, which comprises all mutant alleles, was associated with lower IL-10 production when compared with the other haplotypes. In contrast, the RA patients who did not display the ATA haplotype produced significantly higher levels of IL-10 when compared with those carrying either one (P=0.012) or two (P=0.005) ATA haplotypes. Our findings suggest that there is an association between SNPs in the promoter of the human IL-10 gene and susceptibility to RA.
    Study site: Hospital Tuanku Ja’afar, (Hospital Seremban), Seremban, Negeri Sembilan, Malaysia
    Matched MeSH terms: Haplotypes
  12. Macaulay V, Hill C, Achilli A, Rengo C, Clarke D, Meehan W, et al.
    Science, 2005 May 13;308(5724):1034-6.
    PMID: 15890885
    A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated "relict" populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia. There was an early offshoot, leading ultimately to the settlement of the Near East and Europe, but the main dispersal from India to Australia approximately 65,000 years ago was rapid, most likely taking only a few thousand years.
    Matched MeSH terms: Haplotypes
  13. Fong MY, Rashdi SA, Yusof R, Lau YL
    PLoS One, 2016;11(5):e0155627.
    PMID: 27195821 DOI: 10.1371/journal.pone.0155627
    BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII.

    METHODS: Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3).

    RESULTS: A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes, and high inter-population genetic differentiation (FST index). The main differences between PkγRII and PkDBPαRII include length polymorphism and no departure from neutrality (as measured by Tajima's D statistics) in the PkγRII.

    CONCLUSION: Despite the biological difference between PkγRII and PkDBPαRII, both generally have similar genetic diversity level, natural selection, geographical haplotype clustering and inter-population genetic differentiation index.

    Matched MeSH terms: Haplotypes
  14. Low VL, Tay ST, Kho KL, Koh FX, Tan TK, Lim YA, et al.
    Parasit Vectors, 2015;8:341.
    PMID: 26104478 DOI: 10.1186/s13071-015-0956-5
    The morphotaxonomy of Rhipicephalus microplus complex has been challenged in the last few years and prompted many biologists to adopt a DNA-based method for distinguishing the members of this group. In the present study, we used a mitochondrial DNA analysis to characterise the genetic assemblages, population structure and dispersal pattern of R. microplus from Southeast Asia, the region where the species originated.
    Matched MeSH terms: Haplotypes
  15. Lau CH, Drinkwater RD, Yusoff K, Tan SG, Hetzel DJ, Barker JS
    Anim. Genet., 1998 Aug;29(4):253-64.
    PMID: 9745663
    Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo (Bubalus arnee). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28,000 to 87,000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland south-east Asia and then to the western islands of Indonesia.
    Matched MeSH terms: Haplotypes
  16. Too CL, Tan LK, Heselynn H, Nor-Shuhaila S, Eashwary M, Wahinuddin S, et al.
    Hum Immunol, 2019 Nov;80(11):906-907.
    PMID: 31558331 DOI: 10.1016/j.humimm.2019.09.005
    A total of 194 Southeast Asia Chinese from Peninsular Malaysia were genotyped for HLA-A, -B, -C -DRB1, and -DQB1 loci using polymerase chain reaction sequence-specific oligonucleotide probe hybridization methods. In this report, the HLA-B, HLA-DRB1 and HLA-DQB1 were in Hardy-Weinberg proportions (HWEP) (p > 0.05). We observed significant deviation from HWEP in HLA-A (p 
    Matched MeSH terms: Haplotypes
  17. Deng L, Hoh BP, Lu D, Fu R, Phipps ME, Li S, et al.
    Hum Genet, 2014 Sep;133(9):1169-85.
    PMID: 24916469 DOI: 10.1007/s00439-014-1459-8
    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.
    Matched MeSH terms: Haplotypes
  18. Tan LK, Mohd-Farid B, Salsabil S, Heselynn H, Wahinuddin S, Lau IS, et al.
    Hum Immunol, 2016 Oct;77(10):818-819.
    PMID: 27370684 DOI: 10.1016/j.humimm.2016.06.022
    A total of 951 Southeast Asia Malays from Peninsular Malaysia were genotyped for HLA-A, -B, -C -DRB1, and -DQB1 loci using polymerase chain reaction sequence-specific oligonucleotide probe hybridization methods. In this report, there were significant deviation from Hardy-Weinberg proportions for the HLA-A (p<0.0001), -B (p<0.0001), -DRB1 (p<0.0001) and -DQB1 (p<0.01) loci. Minor deviations from HWEP were detected for HLA-C (p=0.01). This genotype data was available in Allele Frequencies Network Database (AFND) Gonzalez-Galarza et al. (2015).
    Matched MeSH terms: Haplotypes
  19. Yeo FK, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, et al.
    Theor Appl Genet, 2016 Feb;129(2):289-304.
    PMID: 26542283 DOI: 10.1007/s00122-015-2627-5
    Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
    Matched MeSH terms: Haplotypes
  20. Fong MY, Lau YL, Jelip J, Ooi CH, Cheong FW
    J Genet, 2019 Sep;98.
    PMID: 31544794
    Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkβII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkβII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkβII were performed on archived blood samples from Malaysia and 64 PkβII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkβII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkβII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkβII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.
    Matched MeSH terms: Haplotypes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links