Displaying publications 2481 - 2500 of 3987 in total

Abstract:
Sort:
  1. Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Dahalan FA, et al.
    Environ Sci Pollut Res Int, 2023 May;30(24):65364-65378.
    PMID: 37081370 DOI: 10.1007/s11356-023-27046-6
    Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.
    Matched MeSH terms: Waste Water
  2. Sivaranjani SK, Durairaj K, Jayalakshmi G, Sumathi J, Balasubramanian B, Chelliapan S, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116692.
    PMID: 37500033 DOI: 10.1016/j.envres.2023.116692
    Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
    Matched MeSH terms: Water
  3. Mussa ZH, Al-Qaim FF
    Environ Sci Pollut Res Int, 2023 Apr;30(17):50457-50470.
    PMID: 36795212 DOI: 10.1007/s11356-023-25907-8
    10,11-Dihydro-10-hydroxy carbamazepine has been degraded in deionized water and wastewater samples using an electrochemical process. The anode used in the treatment process was graphite-PVC. Different factors such as initial concentration, NaCl amount, type of matrix, applied voltage, role of H2O2, and pH solution were investigated in the treatment of 10,11-dihydro-10-hydroxy carbamazepine. From the outcome of the results, it was noticed that the chemical oxidation of the compound followed a pseudo-first-order reaction. The rate constants were ranged between 22 × 10-4 and 483 × 10-4 min-1. After electrochemical degradation of the compound, several by-products were raised, and they were analyzed using an accurate instrument, liquid chromatography-time of flight-mass spectrometry (LC-TOF/MS). In the present study, the treatment of the compound was followed by high energy consumption under 10 V and 0.5 g NaCl, reaching up to 0.65 Wh mg-1 after 50 min. The inhibition of E. coli bacteria after incubation of the treated 10,11-dihydro-10-hydroxy carbamazepine sample was investigated in terms of toxicity.
    Matched MeSH terms: Waste Water
  4. Sha'ari NSM, Sazali US, Zolkipli AT, Vargas RQ, Shafie FA
    Environ Monit Assess, 2023 Jan 31;195(2):346.
    PMID: 36717515 DOI: 10.1007/s10661-023-10937-z
    Food waste has been considered a global problem due to its adverse impacts on food security, the environment, and the economy; hence needs urgent attention and action. Its generation is expected to increase as the world population grows rapidly, leading to more global waste. This study sought the impacts of the COVID-19 outbreak on the 1-week operation of selected casual dining restaurants in urban (Ampang, Kuala Lumpur) and suburban areas (Kota Bharu, Kelantan and Jasin, Melaka) of Peninsular Malaysia, as the local community adjusted to life with COVID-19. The food waste in this study was classified into three categories: preparation loss, serving loss, and customer's plate waste. Our material flow analysis revealed that the highest food loss at these locations came from preparation loss (51.37%), followed by serving loss (30.95%), and preparation loss (17.8%). Meanwhile, the total average electricity consumption and its carbon footprint for Ampang were 127 kWh and 13.87 kgCO2e, Kota Bharu 269.8 kWh and 29.47 kgCO2e, and Jasin 142.2 kWh and 15.54 kgCO2e, respectively. As for water, Ampang exhibited 22.93 m3 total average consumption and 7.91 kgCO2e greenhouse emissions from this source, Jasin consuming 17.11 m3 of water and releasing 5.88 kgCO2e of carbon footprint, while Kota Bharu emitted 20.21 kgCO2e of greenhouse gases from its 58.71 m3 water consumption. Our findings indicate a major 'food leak' at the preparation stage, from which the waste could be utilised as livestock feed, and that electricity consumption is a greater carbon emitter than water consumption, suggesting a need for improvement to the kitchen practices and equipment.
    Matched MeSH terms: Water
  5. Srie Rahayu SY, Aminingsih T, Fudholi A
    J Trace Elem Med Biol, 2022 May;71:126963.
    PMID: 35231878 DOI: 10.1016/j.jtemb.2022.126963
    BACKGROUND AND AIM: Freshwater clam shells nanoparticles powder is one of the uses of freshwater clams that can manufacture instant granular mineral supplements. This product can be used as a supplement to detoxify heavy metal toxins, such as Mercury. Mercury is an element that is detectable in all environmental media. Adults and children receive the most Mercury from food, air, and water intake. The majority of Mercury in the environment comes from the waste from mining activities and the metal industry. Mercury was found widely in the biosphere and is known as a dangerous hepatotoxicant. This study aimed to describe the hepatoprotective role of nano minerals (Ca, Mg, and Zn) produced from freshwater clam shells against mercury acetate poisoning in mice.

    MATERIAL AND METHODS: The mice were divided randomly into a control group (aqua bidest and mercury acetate) and an experimental group for this purpose. The experimental mice group was given orally nano Ca supplementation in three dose groups (9 mg, 18 mg, and 27 mg/200 g animal body weight) once a day for 21 consecutive days. The mice are then given mercury acetate (1300 µg/200 g animal body weight intraperitoneally) on the 21st day. One hour after giving the nano Ca supplement, the mice's blood was taken. Liver and kidney were autopsied two days later to check quantitative and qualitative changes caused by mercury concentrations in liver and kidney histopathologies.

    RESULTS: The results demonstrated the importance of nano Ca supplementation before mercury acetate induction, which has been shown to reduce necrotic depletion and hepatocyte degeneration.

    CONCLUSION: Nano Ca supplementation has decreased the concentration of Hg in the blood of mice so that it can be used as a potential health supplement to detoxify mercury toxins.

    Matched MeSH terms: Fresh Water
  6. Jing JLJ, Pei Yi T, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T
    PMID: 32403261 DOI: 10.3390/ijerph17093326
    Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.
    Matched MeSH terms: Water
  7. Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, et al.
    Environ Res, 2023 Aug 15;231(Pt 2):116102.
    PMID: 37196688 DOI: 10.1016/j.envres.2023.116102
    Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
    Matched MeSH terms: Water
  8. Liew WC, Muhamad II, Chew JW, Karim KJA
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127288.
    PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288
    Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
    Matched MeSH terms: Water
  9. Saheed IO, Yusof ENM, Oh WD, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124798.
    PMID: 37178882 DOI: 10.1016/j.ijbiomac.2023.124798
    Adsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis. The interactions of various blend forms (C-emimAc, CB-emimAc and CS-emimAc) with Cd(II) gave better adsorption at pH 6. The composites also present excellent chemical stability in both acidic and basic conditions. The monolayer adsorption capacities obtained (under the condition 20 mg/L [Cd], adsorbent dosage 5 mg, contact time 1 h) for the CB-emimAc (84.75 mg/g) > C-emimAc (72.99 mg/g) > CS-emimAc (55.25 mg/g), as this was supported by their order of increasing BET surface area (CB-emimAc (120.1 m2/g) > C-emimAc (67.4 m2/g) > CS-emimAc (35.3 m2/g)). The feasible adsorption interactions between Cd(II) and Ch/AC occurs through the O-H and N-H groups of the composites, as supported by DFT analysis in which an electrostatic interactions was predicted as the dominant force. The interaction energy (-1309.35 eV) calculated via DFT shows that the Ch/AC with amino (-NH) and hydroxyl (-OH) groups are more effective with four significant electrostatic interactions with the Cd(II) ion. The various form of Ch/AC composites developed in EmimAc possess good adsorption capacity and stability for the adsorption Cd(II).
    Matched MeSH terms: Water
  10. Tookhy NA, Isa NMM, Mansor R, Rahaman YA, Ahmad NI, Bui DT, et al.
    Parasitol Res, 2023 Jul;122(7):1475-1488.
    PMID: 37145225 DOI: 10.1007/s00436-023-07845-z
    Lymnaeid snails play a crucial role in the transmission of trematode cercariae as an intermediate host that can infect humans, ruminants like buffalo, and other animals, resulting in serious economic losses. The purpose of the study was to identify the morphological and molecular characteristics of snails and cercariae collected from water bodies near buffalo farms that were integrated with palm oil in Perak, Malaysia. The presence or absence of snails in 35 water bodies was examined via cross-sectional study. From three marsh wetlands, 836 lymnaeid snails were gathered in total. Each snail's shell was morphologically identified to determine its family and species. The cercarial stage inside each snail's body was observed using the crushing method and trematode cercariae types were determined. In addition, the target gene Cytochrome c oxidase subunit 1 (Cox1) and the ribosomal internal transcribed spacer 2 (ITS2) region were used to identify the snail species and cercarial types according to the species level. The findings indicated that the collected snails belong to the family lymnaeidae and Radix rubiginosa species. In snails, the cercarial emergence infection rate was 8.7%. Echinostome, xiphidiocercariae, gymnocephalous, brevifurcate-apharyngeate distome cercariae (BADC), and longifurcate-pharyngeal monostome cercariae (LPMC) are the five morphological cercarial types that were observed. The cercariae were identified using morphological and molecular techniques, and they are members of the four families which are Echinostomatidae, Plagiorchiidae, Fasciolidae, and Schistosomatidae. Interestingly, this is the first study on R. rubiginosa and several trematode cercariae in Perak water bodies near buffalo farms that are integrated with palm oil. In conclusion, our research shown that a variety of parasitic trematodes in Perak use R. rubiginosa as an intermediate host.
    Matched MeSH terms: Water
  11. Zohari Z, Barkham T, Mohamad Maswan N, Chen SL, Muthanna A, Lee KW, et al.
    J Med Microbiol, 2023 Jun;72(6).
    PMID: 37389575 DOI: 10.1099/jmm.0.001729
    In South East Asia, Streptococcus agalactiae ST283 causes sepsis in healthy adults. Raw freshwater fish consumption is the only known risk factor. These two case reports are the first from Malaysia. Although they cluster with Singapore ST283, the epidemiology is complicated by the flow of people and fish across borders.
    Matched MeSH terms: Fresh Water
  12. Hee YY, Weston K, Suratman S, Akhir MF, Latif MT, Valliyodan S
    Environ Sci Pollut Res Int, 2023 May;30(24):65351-65363.
    PMID: 37081368 DOI: 10.1007/s11356-023-26948-9
    Dissolved oxygen is an ecologically critical variable with the prevalence of hypoxia one of the key global anthropogenic issues. A study was carried out to understand the causes of low dissolved oxygen in Brunei Bay, northwest Borneo. Hypoxia was widespread in bottom waters in the monsoonal dry season with dissolved oxygen water where its decomposition consumed oxygen. Despite higher riverine nutrient input in the wet season hypoxia was less extensive due to the combination of turbidity reducing coastal primary production, the intrusion of oxygen-rich water from the South China Sea into offshore bottom layer waters and horizontal flushing increase advection of phytoplankton biomass out of the bay. Future investigation of hypoxia in shallow tropical regions therefore needs to consider the role of monsoonal season.
    Matched MeSH terms: Water
  13. Ng KA, Low KH, Tay KS
    Water Environ Res, 2023 Apr;95(4):e10862.
    PMID: 37032435 DOI: 10.1002/wer.10862
    The combination of UV and water-soluble Fe(III) complexes is an effective method for generating Fe(II) in situ for activating advanced oxidation processes. This study explored the potential of Fe(III)-diethylenetriaminepentaacetic acid (Fe(III)-DTPA) and Fe(III)-ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (Fe(III)-EGTA) in activating the UV/persulfate (UV/PS) for sulfamethazine removal. The initial screening showed that Fe(III)-EGTA and Fe(III)-DTPA could significantly improve the rate of sulfamethazine removal. The optimum molar ratios of persulfate to Fe(III)-DTPA and Fe(III)-EGTA were 100:1 and 100:2.5. The predicted percentage of sulfamethazine removal under the optimized conditions, obtained using response surface methodology, was ~99% for both catalysts. The pH range of 6 to 8 did not significantly affect the performance of UV/PS in the removal of sulfamethazine. The percentage sulfamethazine removal in the selected water samples was ranged from 93.6% to 99.6%, agreeing with the predicted value. The performance of both catalysts in activating UV/PS is comparable with that of the frequently used Fe(III)-EDDS. PRACTITIONERS POINTS: The potential of Fe(III)-DTPA and Fe(III)-EGTA in activating UV/persulfate (UV/PS) was explored. Fe(III)-DTPA and Fe(III)-EGTA improved the performance of UV/PS in sulfamethazine removal. Fe(III)-DTPA and Fe(III)-EGTA are effective in catalyzing UV/PS under pH 6 to 8. The performance of Fe(III)-DTPA and Fe(III)-EGTA is comparable with well-studied Fe(III)-EDDS.
    Matched MeSH terms: Water
  14. Sadiq AC, Olasupo A, Rahim NY, Ngah WSW, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 31;244:125400.
    PMID: 37330084 DOI: 10.1016/j.ijbiomac.2023.125400
    Several water and wastewater technologies have been implored for the removal of dyes during wastewater treatments; however; different types have been reportedly found in surface and groundwater systems. Hence, there is a need to investigate other water treatment technologies for the complete remediation of dyes in aquatic environments. In this study, novel chitosan-based polymer inclusion membranes (PIMs) were synthesized for the removal of malachite green dye (MG) which is a recalcitrant of great concern in water. Two types of PIMs were synthesized in this study, the first PIM (PIMs-A) was composed of chitosan, bis-(2-ethylhexyl) phosphate (B2EHP), and dioctyl phthalate (DOP). While, the second PIMs (PIMs-B) were composed of chitosan, Aliquat 336, and DOP. The physico-thermal stability of the PIMs was investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), both PIMs demonstrated good stability with a weak intermolecular force of attraction amongst the various components of the membranes. The effects of the initial concentration of MG, pH of the MG solution, stripping solution, and time were investigated. At optimum conditions, both membranes (PIM-A and B) recorded the highest efficiencies of 96 % and 98 % at pH 4 and initial contaminants concentration of 50 mg/L, respectively. Finally, both PIMs were used for the removal of MG in different environmental samples (river water, seawater, and tap water) with an average removal efficiency of 90 %. Thus, the investigated PIMs can be considered a potential suitable technique for the removal of dyes and other contaminants from aquatic matrices.
    Matched MeSH terms: Waste Water
  15. Junaidi -, Asmaruddin MS, Kurrohman T, Nurdin -, Khazanah W
    Trop Biomed, 2023 Jun 01;40(2):160-164.
    PMID: 37650401 DOI: 10.47665/tb.40.2.005
    Entamoeba histolytica (E. histolytica), the causative agent of amoebiasis, is still a global public health problem that cannot be controlled, especially in tropical and subtropical countries. This study was conducted to obtain information about the incidence of Entamoeba histolytica/dispar/ moshkovskii complex infection and the factors that influence it. The prevalence of infection with the Entamoeba histolytica/dispar/moshkovskii complex and the factors that influence it in people living on the smallest and outermost island of Indonesia, Sabang Island, Aceh Province. This study involved 335 respondents aged >= 10 years. Respondents were selected by non-probability sampling technique. Interviews and observations were conducted to identify risk factors. The Entamoeba histolytica/dispar/ moshkovskii complex was identified by direct examination, concentration, and Whitley's trichrome staining techniques. A Chi-Square test was performed to analyze the correlation of risk factors with the incidence of infection. The prevalence of infection with the Entamoeba histolytica/dispar/ moshkovskii complex in the people of Sabang Island was 26.6% (89/335). Source and adequacy of clean water correlated with the incidence of Entamoeba histolytica/dispar/moshkovskii complex infection. Demographic variables are not correlated with the incidence of infection. However, the group of women aged > 61 years, unemployed, unmarried, and earning less than the regional minimum wage tend to be more likely to be found with Entamoeba histolytica/dispar/moshkovskii complex infections. Thus it can be concluded that the prevalence of infection with the Entamoeba histolytica/dispar/moshkovskii complex on Sabang Island is in the high category. The prevalence of E. histolytica as the causative agent of amoebiasis cannot be explained with certainty because the two identical non-pathogenic Entamoeba species cannot be distinguished by microscopic identification. Sources and adequacy of clean water correlate with the incidence of Entamoeba histolytica/dispar/moshkovskii complex infection in the people of Sabang Island.
    Matched MeSH terms: Water
  16. Samson DO, Aziz MZA, Shukri A, Mat Jafri MZ, Hashim R, Zuber SH, et al.
    Health Phys, 2023 Aug 01;125(2):77-91.
    PMID: 36826380 DOI: 10.1097/HP.0000000000001688
    The current study was undertaken to investigate the radiological and dosimetric parameters of natural product-based composite (SPI/NaOH/IA-PAE/ Rhizophora spp .) phantoms. The radiological properties of the phantoms were measured at different gamma energies from Compton scatter of photons through angles of 0, 30, 45, 60, 75, and 90 degrees. Ionization chamber (IC) and Gafchromic EBT3 film dosimeters were employed to evaluate the dosimetric characteristics for photons (6-10 MV) and electrons (6-15 MeV). Radiological property results of the composite phantoms were consistent with good quality compared to those of solid water phantoms and theoretical values of water. Photon beam quality index of the SPI15 phantom with p-values of 0.071 and 0.073 exhibited insignificant changes. In addition, good agreement was found between PDD curves measured with IC and Gafchromic EBT3 film for both photons and electrons. The computed therapeutic and half-value depth ranges matched within the limits and are similar to those of water and solid water phantoms. Therefore, the radiological and dosimetric parameters of the studied composite phantom permit its use in the selection of convenient tissue- and water-equivalent phantom material for medical applications.
    Matched MeSH terms: Water
  17. Khan MB, Nisar H, Ng CA, Yeap KH, Lai KC
    Microsc Microanal, 2017 12;23(6):1130-1142.
    PMID: 29212566 DOI: 10.1017/S1431927617012673
    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.
    Matched MeSH terms: Waste Water
  18. Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, et al.
    Ecotoxicol Environ Saf, 2023 Sep 15;263:115231.
    PMID: 37429088 DOI: 10.1016/j.ecoenv.2023.115231
    Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.
    Matched MeSH terms: Waste Water
  19. Vo TP, Rintala J, Dai L, Oh WD, He C
    Water Res, 2023 Oct 15;245:120672.
    PMID: 37783176 DOI: 10.1016/j.watres.2023.120672
    Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.
    Matched MeSH terms: Water
  20. Hwong CS, Leong KH, Aziz AA, Kong KW
    Chem Biodivers, 2023 Jul;20(7):e202300215.
    PMID: 37278124 DOI: 10.1002/cbdv.202300215
    This study aimed to fractionate Alternanthera sessilis Red (ASR) crude extracts and determine their antioxidant activities as well as the related active components in the whole plant. ASR was extracted with water and ethanol, and further separated using a Sephadex LH-20 column. Following the assessments of the polyphenolic contents and antioxidant activities of crude extracts (H2 OASR and EtOHASR ) and fractions, a HPLC-QToF analysis was performed on the crude extracts and selected fractions (H2 OASR FII and EtOHASR FII). Three water fractions (H2 OASR FI, FII and FIII) and four ethanolic fractions (EtOHASR FI, FII, FIII and FIV) were derived from their crude extracts, respectively. EtOHASR FII exhibited the greatest total phenolic content (120.41 mg GAE/g fraction), total flavonoid content (223.07 mg RE/g fraction), and antioxidant activities (DPPH IC50 =159.43 μg/mL; FRAP=1.93 mmol Fe2+ /g fraction; TEAC=0.90 mmol TE/g fraction). Correlation analysis showed significant (p<0.01) positive correlations between both TPC (r=0.748-0.970) and TFC (r=0.686-0.949) with antioxidant activities in the crude extracts and fractions. Flavonoids were the major compounds in the four selected samples tentatively identified using HPLC-QToF-MS/MS, with the highest number of 30 polyphenol compounds detected in the most active fraction, EtOHASR FII.
    Matched MeSH terms: Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links