Displaying publications 241 - 260 of 928 in total

Abstract:
Sort:
  1. Jønsson KA, Fjeldså J, Ericson PG, Irestedt M
    Biol Lett, 2007 Jun 22;3(3):323-6.
    PMID: 17347105
    Biogeographic connections between Australia and other continents are still poorly understood although the plate tectonics of the Indo-Pacific region is now well described. Eupetes macrocerus is an enigmatic taxon distributed in a small area on the Malay Peninsula and on Sumatra and Borneo. It has generally been associated with Ptilorrhoa in New Guinea on the other side of Wallace's Line, but a relationship with the West African Picathartes has also been suggested. Using three nuclear markers, we demonstrate that Eupetes is the sister taxon of the South African genus Chaetops, and their sister taxon in turn being Picathartes, with a divergence in the Eocene. Thus, this clade is distributed in remote corners of Africa and Asia, which makes the biogeographic history of these birds very intriguing. The most parsimonious explanation would be that they represent a relictual basal group in the Passerida clade established after a long-distance dispersal from the Australo-Papuan region to Africa. Many earlier taxonomic arrangements may have been based on assumptions about relationships with similar-looking forms in the same, or adjacent, biogeographic regions, and revisions with molecular data may uncover such cases of neglect of ancient relictual patterns reflecting past connections between the continents.
    Matched MeSH terms: Molecular Sequence Data
  2. Groth I, Tan GYA, González JM, Laiz L, Carlsohn MR, Schütze B, et al.
    Int J Syst Evol Microbiol, 2007 Mar;57(Pt 3):513-519.
    PMID: 17329776 DOI: 10.1099/ijs.0.64602-0
    The taxonomic status of two actinomycetes isolated from the wall of a hypogean Roman catacomb was established based on a polyphasic investigation. The organisms were found to have chemical and morphological markers typical of members of the genus Amycolatopsis. They also shared a range of chemical, molecular and phenotypic markers which served to separate them from representatives of recognized Amycolatopsis species. The new isolates formed a branch in the Amycolatopsis 16S rRNA gene sequence tree with Amycolatopsis minnesotensis NRRL B-24435(T), but this association was not supported by a particularly high bootstrap value or by the product of the maximum-parsimony tree-making algorithm. The organisms were distinguished readily from closely related Amycolatopsis species based on a combination of phenotypic properties and from all Amycolatopsis strains by their characteristic menaquinone profiles, in which tetra-hydrogenated menaquinones with 11 isoprene units predominated. The combined genotypic and phenotypic data indicate that the isolates merit recognition as representing a novel species of the genus Amycolatopsis. The name proposed for this novel species is Amycolatopsis nigrescens sp. nov., with type strain CSC17Ta-90(T) (=HKI 0330(T)=DSM 44992(T)=NRRL B-24473(T)).
    Matched MeSH terms: Molecular Sequence Data
  3. Kissinger JC, Collins WE, Li J, McCutchan TF
    J Parasitol, 1998 Apr;84(2):278-82.
    PMID: 9576499
    Plasmodium inui (Halberstaedter and von Prowazek, 1907), a malarial parasite of Old World monkeys that occurs in isolated pockets throughout the Celebes, Indonesia, Malaysia, and the Philippines, has traditionally been considered to be related more closely to Plasmodium malariae of humans (and its primate counterpart Plasmodium brasilianum), than to other primate Plasmodium species. This inference was made in part because of the similarities in the periodicities or duration of the asexual cycle in the blood, the extended sporogonic cycle, and the longer period of time for development of the pre-erythrocytic stages in the liver. Both P. inui and P. malariae have quartan (72 hr) periodicities associated with their asexual cycle, whereas other primate malarias, such as Plasmodium fragile and Plasmodium cynomolgi, are associated with tertian periodicities (48 hr), and Plasmodiumn knowlesi, with a quotidian (24 hr) periodicity. Phylogenetic analyses of portions of orthologous small subunit ribosomal genes reveal that P. inui is actually more closely related to the Plasmodium species of the "vivax-type" lineage than to P. malariae. Ribosomal sequence analysis of many different, geographically isolated, antigenically distinct P. inui isolates reveals that the isolates are nearly identical in sequence and thus members of the same species.
    Matched MeSH terms: Molecular Sequence Data
  4. Tnah LH, Lee SL, Ng KK, Lee CT, Bhassu S, Othman RY
    J Hered, 2013 Jan-Feb;104(1):115-26.
    PMID: 23132907 DOI: 10.1093/jhered/ess076
    Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.
    Matched MeSH terms: Molecular Sequence Data
  5. Pritchard LI, Gould AR, Wilson WC, Thompson L, Mertens PP, Wade-Evans AM
    Virus Res, 1995 Mar;35(3):247-61.
    PMID: 7785314
    The nucleotide sequence of the RNA segment 3 of bluetongue virus (BTV) serotype 2 (Ona-A) from North America was determined to be 2772 nucleotides containing a single large open reading frame of 2703 nucleotides (901 amino acid). The predicted VP3 protein exhibited general physiochemical properties (including hydropathy profiles) which were very similar to those previously deduced for other BTV VP3 proteins. Partial genome segment 3 sequences, obtained by polymerase chain reaction (PCR) sequencing, of BTV isolates from the Caribbean were compared to those from North America, South Africa, India, Indonesia, Malaysia and Australia, as well as other orbiviruses, to determine the phylogenetic relationships amongst them. Three major BTV topotypes (Gould, A.R. (1987) Virus Res. 7, 169-183) were observed which had nucleotide sequences that differed by approximately 20%. At the molecular level, geographic separation had resulted in significant divergence in the BTV genome segment 3 sequences, consistent with the evolution of distinct viral populations. The close phylogenetic relationship between the BTV serotype 2 (Ona-A strain) from Florida and the BTV serotypes 1, 6 and 12 from Jamaica and Honduras, indicated that the presence of BTV serotype 2 in North America was probably due to an exotic incursion from the Caribbean region as previously proposed by Sellers and Maaroof ((1989) Can. J. Vet. Res. 53, 100-102) based on trajectory analysis. Conversely, nucleotide sequence analysis of Caribbean BTV serotype 17 isolates suggested they arose from incursions which originated in the USA, possibly from a BTV population distinct from those circulating in Wyoming.
    Matched MeSH terms: Molecular Sequence Data
  6. Osman O, Fong MY, Devi S
    Virus Res, 2008 Jul;135(1):48-52.
    PMID: 18406488 DOI: 10.1016/j.virusres.2008.02.006
    In a previous study, we have reported the detection and isolation of dengue virus in Brunei (Osman, O., Fong, M.Y., Devi, S., 2007. A preliminary study of dengue infection in Brunei. JJID 60 (4), 205-208). DEN-2 was the predominant serotype followed by DEN-1. The full genomic sequences of 3 DEN-2 viruses isolated during the 2005-2006 dengue incident in Brunei were determined. Twenty-five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the viral genome. The amplified PCR products were sent for sequencing and their nucleotides and the deduced amino acids were determined. All three DEN-2 virus isolated were clustered in the Cosmopolitan genotype of the DEN-2 classification by Twiddy et al. This work constitutes the first complete genetic characterization of three Brunei DEN-2 virus strains.
    Matched MeSH terms: Molecular Sequence Data
  7. Collopy LC, Walne AJ, Cardoso S, de la Fuente J, Mohamed M, Toriello H, et al.
    Blood, 2015 Jul 09;126(2):176-84.
    PMID: 26024875 DOI: 10.1182/blood-2015-03-633388
    Dyskeratosis congenita (DC) and related diseases are a heterogeneous group of disorders characterized by impaired telomere maintenance, known collectively as the telomeropathies. Disease-causing variants have been identified in 10 telomere-related genes including the reverse transcriptase (TERT) and the RNA component (TERC) of the telomerase complex. Variants in TERC and TERT can impede telomere elongation causing stem cells to enter premature replicative senescence and/or apoptosis as telomeres become critically short. This explains the major impact of the disease on highly proliferative tissues such as the bone marrow and skin. However, telomerase variants are not always fully penetrant and in some families disease-causing variants are seen in asymptomatic family members. As a result, determining the pathogenic status of newly identified variants in TERC or TERT can be quite challenging. Over a 3-year period, we have identified 26 telomerase variants (16 of which are novel) in 23 families. Additional investigations (including family segregation and functional studies) enabled these to be categorized into 3 groups: (1) disease-causing (n = 15), (2) uncertain status (n = 6), and (3) bystanders (n = 5). Remarkably, this process has also enabled us to identify families with novel mechanisms of inheriting human telomeropathies. These include triallelic mutations, involving 2 different telomerase genes, and an epigenetic-like inheritance of short telomeres in the absence of a telomerase mutation. This study therefore highlights that telomerase variants have highly variable functional and clinical manifestations and require thorough investigation to assess their pathogenic contribution.
    Matched MeSH terms: Molecular Sequence Data
  8. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Molecular Sequence Data
  9. Choi SB, Normi YM, Wahab HA
    Protein J, 2009 Dec;28(9-10):415-27.
    PMID: 19859792 DOI: 10.1007/s10930-009-9209-9
    Twenty percent of genes that encode for hypothetical proteins from Klebsiella pneumoniae MGH78578 were identified, leading to KPN00728 and KPN00729 after bioinformatics analysis. Both open reading frames showed high sequence homology to Succinate dehydrogenase Chain C (SdhC) and D (SdhD) from Escherichia coli. Recently, KPN00729 was assigned as SdhD. KPN00728 thus remains of particular interest as no annotated genes from the complete genome sequence encode for SdhC. We discovered KPN00728 has a missing region with conserved residues important for ubiquinone (UQ) and heme group binding. Structure and function prediction of KPN00728 coupled with secondary structure analysis and transmembrane topology showed KPN00728 adopts SDH-(subunit C)-like structure. To further probe its functionality, UQ was docked on the built model (consisting KPN00728 and KPN00729) and formation of hydrogen bonds between UQ and Ser27, Arg31 (KPN00728) and Tyr84 (KPN00729) further reinforces and supports that KPN00728 is indeed SDH. This is the first report on the structural and function prediction of KPN00728 of K. pneumoniae MGH78578 as SdhC.
    Matched MeSH terms: Molecular Sequence Data
  10. Vythilingam I, Oda K, Chew TK, Mahadevan S, Vijayamalar B, Morita K, et al.
    J Am Mosq Control Assoc, 1995 Mar;11(1):94-8.
    PMID: 7616198
    Detection and isolation of Japanese encephalitis (JE) virus were attempted from female mosquitoes collected in Kampong Pasir Panjang, Sabak Bernam, Selangor, from May to November 1992. A total of 7,400 mosquitoes consisting of 12 species in 148 pools were processed and inoculated into Aedes albopictus clone C6/36 cell cultures. Of these, 26 pools showed the presence of viral antigens in the infected C6/36 cells by specific immunoperoxidase staining using an anti-JE virus polyclonal antibody. Presence of JE virus genome was confirmed in the infected culture fluid for 16 pools by using reverse transcriptase-polymerase chain reaction and JE virus-specific primers. Of these, 3 pools were from Culex tritaeniorhynchus, 4 from Culex vishnui, 3 from Culex bitaeniorhynchus, 2 from Culex sitiens, one from Aedes species, and 3 from Culex species. Isolation of JE virus from Cx. sitiens, Cx. bitaeniorhynchus, and Aedes sp. (Aedes butleri and Ae. albopictus) is reported for the first time in Malaysia.
    Matched MeSH terms: Molecular Sequence Data
  11. Vythilingam I, Oda K, Tsuchie H, Mahadevan S, Vijayamalar B
    J Am Mosq Control Assoc, 1994 Jun;10(2 Pt 1):228-9.
    PMID: 8965071
    Isolation of Japanese encephalitis virus (JEV) from mosquitoes in Sabak Bernam, Selangor, Malaysia, was attempted. An aliquot of homogenate from each pool of mosquitoes, 50 per tube, was inoculated into Aedes albopictus clone C6/36 cells for virus isolation. Each cell culture was tested for the presence of viral antigen by immunoperoxidase staining using an anti-JEV polyclonal antibody. Out of 4 Culex sitiens mosquito pools, 2 pools were positive for JEV by cell culture. Presence of JEV genome in the cell cultures for Cx. sitiens was confirmed by using reverse transcriptase-polymerase chain reaction and JEV-specific primers. This is the first report on the isolation of JEV from Cx. sitiens.
    Matched MeSH terms: Molecular Sequence Data
  12. Chehri K, Salleh B, Zakaria L
    Microb Ecol, 2015 Apr;69(3):457-71.
    PMID: 25238930 DOI: 10.1007/s00248-014-0494-2
    Members of Fusarium solani species complex (FSSC) have been known as plant, animal, and human pathogens. Nevertheless, the taxonomic status of such an important group of fungi is still very confusing and many new species as well as lineages have been elucidated recently. Unfortunately, most of the new taxa came from temperate and subtropical regions. Therefore, the objectives of the present study were to identify strains of FSSC recovered from different sources in Malaysia. In the present study, 55 strains belonging to the FSSC were examined and phylogenetically analyzed on the basis of internal transcribed spacer (ITS) regions and partial translation elongation factor-1 (TEF-1α) sequences. Based on morphological features, a total of 55 strains were selected for molecular studies. Based on morphological features, the strains were classified into four described Fusarium species, namely Fusarium keratoplasticum, Fusarium falciforme, FSSC 5, and Fusarium cf. ensiforme, and one unknown phylogenetic species was introduced. Although the data obtained from morphological and molecular studies sufficiently supported each other, the phylogenetic trees based on ITS and TEF-1α dataset clearly distinguished closely related species and distinctly separated all morphological taxa. All members of FSSC in this research were reported for the first time for Malaysian mycoflora.
    Matched MeSH terms: Molecular Sequence Data
  13. Saito A, Kono K, Nomaguchi M, Yasutomi Y, Adachi A, Shioda T, et al.
    J Gen Virol, 2012 Mar;93(Pt 3):594-602.
    PMID: 22113010 DOI: 10.1099/vir.0.038075-0
    The antiretroviral factor tripartite motif protein 5 (TRIM5) gene-derived isoform (TRIMCyp) has been found in at least three species of Old World monkey: rhesus (Macaca mulatta), pig-tailed (Macaca nemestrina) and cynomolgus (Macaca fascicularis) macaques. Although the frequency of TRIMCyp has been well studied in rhesus and pig-tailed macaques, the frequency and prevalence of TRIMCyp in cynomolgus macaques remain to be definitively elucidated. Here, the geographical and genetic diversity of TRIM5α/TRIMCyp in cynomolgus macaques was studied in comparison with their anti-lentiviral activity. It was found that the frequency of TRIMCyp in a population in the Philippines was significantly higher than those in Indonesian and Malaysian populations. Major and minor haplotypes of cynomolgus macaque TRIMCyp with single nucleotide polymorphisms in the cyclophilin A domain were also found. The functional significance of the polymorphism in TRIMCyp was examined, and it was demonstrated that the major haplotype of TRIMCyp suppressed human immunodeficiency virus type 1 (HIV-1) but not HIV-2, whilst the minor haplotype of TRIMCyp suppressed HIV-2 but not HIV-1. The major haplotype of TRIMCyp did not restrict a monkey-tropic HIV-1 clone, NL-DT5R, which contains a capsid with the simian immunodeficiency virus-derived loop between α-helices 4 and 5 and the entire vif gene. These results indicate that polymorphisms of TRIMCyp affect its anti-lentiviral activity. Overall, the results of this study will help our understanding of the genetic background of cynomolgus macaque TRIMCyp, as well as the host factors composing species barriers of primate lentiviruses.
    Matched MeSH terms: Molecular Sequence Data
  14. Labeda DP, Price NP, Tan GYA, Goodfellow M, Klenk HP
    Int J Syst Evol Microbiol, 2010 Jun;60(Pt 6):1444-1449.
    PMID: 19671714 DOI: 10.1099/ijs.0.016568-0
    The species Amycolatopsis fastidiosa (ex Celmer et al. 1977) Henssen et al. 1987 was proposed, based on morphological and chemotaxonomic observations, for a strain originally described as 'Pseudonocardia fastidiosa' Celmer et al. 1977 in a US patent. In the course of a phylogenetic study of the taxa with validly published names within the suborder Pseudonocardineae based on 16S rRNA gene sequences, it became apparent that this species was misplaced in the genus Amycolatopsis. After careful evaluation of the phylogeny, morphology, chemotaxonomy and physiology of the type strain, it was concluded that this strain represents a species of the genus Actinokineospora that is unable to produce motile spores. The description of the genus Actinokineospora is therefore emended to accommodate species that do not produce motile spores, and it is proposed that Amycolatopsis fastidiosa be transferred to the genus Actinokineospora as Actinokineospora fastidiosa comb. nov. The type strain is NRRL B-16697(T) =ATCC 31181(T) =DSM 43855(T) =JCM 3276(T) =NBRC 14105(T) =VKM Ac-1419(T).
    Matched MeSH terms: Molecular Sequence Data
  15. Higashino A, Sakate R, Kameoka Y, Takahashi I, Hirata M, Tanuma R, et al.
    Genome Biol, 2012;13(7):R58.
    PMID: 22747675 DOI: 10.1186/gb-2012-13-7-r58
    The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome.
    Matched MeSH terms: Molecular Sequence Data
  16. Lim HK, Syed MA, Shukor MY
    J Basic Microbiol, 2012 Jun;52(3):296-305.
    PMID: 22052341 DOI: 10.1002/jobm.201100121
    A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem.
    Matched MeSH terms: Molecular Sequence Data
  17. Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA
    Plasmid, 2014 Jul;74:32-8.
    PMID: 24879963 DOI: 10.1016/j.plasmid.2014.05.003
    A vector that drives the expression of the reporter gusA gene in both Lactobacillus plantarum and Lactococcus lactis was constructed in this study. This vector contained a newly characterized heat shock promoter (Phsp), amplified from an Enterococcus faecium plasmid, pAR6. Functionality and characterization of this promoter was initially performed by cloning Phsp into pNZ8008, a commercial lactococcal plasmid used for screening of putative promoters which utilizes gusA as a reporter. It was observed that Phsp was induced under heat, salinity and alkaline stresses or a combination of all three stresses. The newly characterized Phsp promoter was then used to construct a novel Lactobacillus vector, pAR1801 and its ability to express the gusA under stress-induced conditions was reproducible in both Lb. plantarum Pa21 and L. lactis M4 hosts.
    Matched MeSH terms: Molecular Sequence Data
  18. Shirasuka Y, Nakajima K, Asakura T, Yamashita H, Yamamoto A, Hata S, et al.
    Biosci Biotechnol Biochem, 2004 Jun;68(6):1403-7.
    PMID: 15215616
    A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.
    Matched MeSH terms: Molecular Sequence Data
  19. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
    Matched MeSH terms: Molecular Sequence Data
  20. Ee R, Yong D, Lim YL, Yin WF, Chan KG
    J Biotechnol, 2015 Jun 20;204:5-6.
    PMID: 25848988 DOI: 10.1016/j.jbiotec.2015.03.020
    Pandoraea vervacti DSM 23571(T) is an oxalate metabolizing bacterium isolated from an uncultivated field soil in Mugla, Turkey. Here, we present the first complete genome sequence of P. vervacti DSM 23571(T). A complete pathway for degradation of oxalate was revealed from the genome analysis. These data are important to path new opportunities for genetic engineering in the field of biotechnology.
    Matched MeSH terms: Molecular Sequence Data
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links