The concentration of nine trace elements were analyzed in the different tissue organs of commonly available crabs (Portunus sanguinolentus, Portunus pelagicus and Scylla serrate) and bivalve (Polymesoda erosa) species collected from the Miri coast, Borneo in order to evaluate the potential health risk by consumption of these aquatic organisms. Among the analyzed organs, metal accumulation was higher in the gill tissues. The essential (Cu and Zn) and non-essential (Pb and Cd) elements showed the highest (i.e. Zn) and lowest concentrations (i.e. Cd) in their tissue organs, respectively. The estimated daily intake and hazard indices of all metals in the muscle indicate that the measured values were below the provisional tolerable daily intake suggested by the joint FAO/WHO Expert Committee on Food Additives. Compared to Malaysian and international seafood guideline values the results obtained from the present study are lower than the permissible limits and safe for consumption.
Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
This study determined the heavy metals (HMs) accumulation in different vegetables in different seasons and attributed a serious health hazard to human adults due to the consumption of such vegetables in Jhansi. The total amounts of zinc (Zn), lead (Pb), nickel (Ni), manganese (Mn), copper (Cu), cobalt (Co), and cadmium (Cd) were analysed in 28 composite samples of soil and vegetables (Fenugreek, spinach, eggplant, and chilli) collected from seven agricultural fields. The transfer factor (TF) of HMs from soil to analysed vegetables was calculated, and significant non-carcinogenic health risks due to exposure to analysed heavy metals via consumption of these vegetables were computed. The statistical analysis involving Principal Component Analysis (PCA) and Pearson's correlation matrix suggested that anthropogenic activities were a major source of HMs in the study areas. The target hazard quotient of Cd, Mn, and Pb for fenugreek (2.156, 2.143, and 2.228, respectively) and spinach (3.697, 3.509, 5.539, respectively) exceeded the unity, indicating the high possibilities of non-carcinogenic health risks if regularly consumed by human beings. This study strongly suggests the continuous monitoring of soil, irrigation water, and vegetables to prohibit excessive accumulation in the food chain.
Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
Consumption of iced beverages is common in Malaysia although specific research focusing on its safety parameters such as presence of faecal coliforms and heavy metal elements remains scarce. A study conducted in Kelantan indicated that faecal coliforms were detected in the majority of the ice cube samples analyzed, largely attributable to improper handling. Hence, it was found pertinent to conduct similar study in other parts of the country such as Johor Bahru if the similar pattern prevailed. Therefore, this present cross sectional study which randomly sampled ice cubes from 30 permanent food outlets in Taman Universiti, Johor Bahru for detecting contamination by faecal coliforms and selected heavy metal elements (lead, copper, manganese and zinc) acquires significance. Faecal coliforms were detected in 11 (36.67%) of the samples, ranging between 1 CFU/100 mL to > 50 CFU/100 mL; two of the samples were grossly contaminated (>50 CFU/100 mL). Interestingly, while positive detection of lead was observed in 29 of the 30 ice cube samples (mean: 0.511±0.105 ppm; range: 0.489-0.674 ppm), copper, manganese and zinc were not detected. In addition, analysis on commercially bottled mineral water as well as in tap water samples did not detect such contaminations. Therefore, it appears that (1) contamination of faecal coliforms in ice cubes in food outlets in Malaysia may not be sporadic in pattern but rather prevalent and (2) the source of water used for manufacturing the ice cubes that contained significant amount of lead would suggest that (3) it was neither originated from the treated tap water supply nor bottled mineral water or (4) perhaps contaminated during manufacturing process. Further studies exploring the source of water used for manufacturing these ice cubes as well as the handling process among food operators deserve consideration.
Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
Quantitative indices are classically employed to evaluate the contamination status of metals with reference to the baseline concentrations. The baselines vary considerably across different geographical zones. It is imperative to determine the local geochemical baseline to evaluate the contamination status. No study has been done to establish the background concentrations in tropical rivers of this region. This paper reports the background concentrations of metals in water and sediment of the Baleh River, Sarawak, derived based on the statistical methods where the areas possibly disturbed are distinguished from the undisturbed area. The baseline levels of six elements in water determined were Al (0.34 mg/L), Fe (0.51 mg/L), Mn (0.12 mg/L), Cu (0.01 mg/L), Pb (0.03 mg/L), and Zn (0.05 mg/L). Arsenic and selenium were below the detection limit. For sediment, the background values were established according to statistical methods including (mean + 2σ), iterative 2σ, cumulative distribution frequency, interquartile, and calculation distribution function. The background values derived using the iterative 2σ algorithm and calculated distribution function were relatively lower. The baseline levels calculated were within the range reported in the literatures mainly from tropical and sub-tropical regions. The upper limits proposed for nine elements in sediment were Al (100,879 mg/kg), Cr (75.45 mg/kg), Cu (34.59 mg/kg), Fe (37,823 mg/kg), Mn (793 mg/kg), Ni (22.88 mg/kg), Pb (27.26 mg/kg), Zn (70.64 mg/kg), and Hg (0.33 mg/kg). Quantitative indices calculated suggest low risk of contamination at the Baleh River.
This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012-2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.
The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.
Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.
A contaminated aquatic environment may end up in the food chain and pose risks to tourist health in a tourist destination. To assess the health risk for tourists that visit St. Martine Island, which is a popular domestic and foreign tourist destination in Bangladesh, a study is undertaken to analyse the level of heavy metal contamination from chromium (Cr), manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg) and iron (Fe) in six of the most consumed fish (L. fasciatus, R. kanagurta, H. nigrescens, P. cuneatus, P. annularis and S. rubrum) and five crustacean species, which consist of a shrimp (P. sculptilis), a lobster (P. versicolor) and three crabs (P. sanguinolentus, T. crenata and M. victor) captured. The samples were analysed for trace metals using atomic absorption spectrometer, and the concentrations of the metals were interpreted using the United State Environmental Protection Agency (USEPA) health risk model. The muscle and carapace/exoskeleton of shrimp, lobster and crabs were analysed and contained various concentrations of Pb, Hg, As, Cr, Cd, Fe, Cu, Zn and Mn. The hierarchy of the heavy metal in marine fish is Fe > Cd > Zn > Pb > Cu > Cr > Mn > Hg. The concentrations of Pb in the species R. kanagurta, H. nigresceus and S. rubrum were above the food safety guideline by Australia, New Zealand and other legislations in most marine fish and crustaceans. Crabs showed higher mean heavy metal concentrations than shrimp and lobster. Acceptable carcinogen ranges were observed in three fish species (R. kanagurata, H. nigresceus and S. rubrum) and one crustacean species (P. sculptilis) samples.
This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al2O3 and Fe2O3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na2O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.
Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
This study was carried out to evaluate the distribution, enrichment and ecological risk of heavy metals (arsenic (As), zinc (Zn), manganese (Mn), copper (Cu) and lead (Pb)) concentration in Kuala Selangor estuary at the Kuala Selangor Nature Park. The results suggested that As and Pb in sediment were as high as the background value, suggesting the presence of anthropogenic contamination. The risk assessment of sediment Igeo, CD, and PERI, on the other hand, showed low risk of heavy metals in Kuala Selangor estuary. Meanwhile, risk assessment code (RAC) results showed that Mn, As and Zn presented medium to high level of environmental risk. The translocation factor and bioaccumulation factors of heavy metal concentration by mangrove vegetation showed a variety of trends, which indicates the different partitioning and uptake ability of heavy metal in the tissues of different mangrove species. Therefore, underscores the importance of preserving the high diversity of mangroves at securing the health and productivity of the coastal region. These results may play a critical role in facilitating decision makers in managing the sustainability of mangrove forests.
This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p
This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.