Displaying publications 3301 - 3320 of 8213 in total

Abstract:
Sort:
  1. Tan SN, Teng ST, Lim HC, Kotaki Y, Bates SS, Leaw CP, et al.
    Harmful Algae, 2016 12;60:139-149.
    PMID: 28073557 DOI: 10.1016/j.hal.2016.11.003
    The distribution of the toxic pennate diatom Nitzschia was investigated at four mangrove areas along the coastal brackish waters of Peninsular Malaysia. Eighty-two strains of N. navis-varingica were isolated and established, and their identity confirmed morphologically and molecularly. Frustule morphological characteristics of the strains examined are identical to previously identified N. navis-varingica, but with a sightly higher density of the number of areolae per 1μm (4-7 areolae). Both LSU and ITS rDNAs phylogenetic trees clustered all strains in the N. navis-varingica clade, with high sequence homogeneity in the LSU rDNA (0-0.3%), while the intraspecific divergences in the ITS2 data set reached up to 7.4%. Domoic acid (DA) and its geometrical isomers, isodomoic A (IA) and isodomoic B (IB), were detected in cultures of N. navis-varingica by FMOC-LC-FLD, and subsequently confirmed by LC-MS/MS, with selected ion monitoring (SIM) and multiple reaction monitoring (MRM) runs. DA contents ranged between 0.37 and 11.06pgcell-1. This study demonstrated that the toxigenic euryhaline diatom N. navis-varingica is widely distributed in Malaysian mangrove swamps, suggesting the risk of amnesic shellfish poisoning and the possibility of DA contamination in the mangrove-related fisheries products.
    Matched MeSH terms: DNA, Ribosomal/genetics
  2. Agha S, Mekkawy W, Ibanez-Escriche N, Lind CE, Kumar J, Mandal A, et al.
    Anim. Genet., 2018 Oct;49(5):421-427.
    PMID: 30058152 DOI: 10.1111/age.12680
    Robustness has become a highly desirable breeding goal in the globalized agricultural market. Both genotype-by-environment interaction (G × E) and micro-environmental sensitivity are important robustness components of aquaculture production, in which breeding stock is often disseminated to different environments. The objectives of this study were (i) to quantify the degree of G × E by assessing the growth performance of Genetically Improved Farmed Tilapia (GIFT) across three countries (Malaysia, India and China) and (ii) to quantify the genetic heterogeneity of environmental variance for body weight at harvest (BW) in GIFT as a measure of micro-environmental sensitivity. Selection for BW was carried out for 13 generations in Malaysia. Subsets of 60 full-sib families from Malaysia were sent to China and India after five and nine generations respectively. First, a multi-trait animal model was used to analyse the BW in different countries as different traits. The results indicate a strong G × E. Second, a genetically structured environmental variance model, implemented using Bayesian inference, was used to analyse micro-environmental sensitivity of BW in each country. The analysis revealed the presence of genetic heterogeneity of both BW and its environmental variance in all environments. The presence of genetic variation in residual variance of BW implies that the residual variance can be modified by selection. Incorporating both G × E and micro-environmental sensitivity information may help in selecting robust genotypes with high performance across environments and resilience to environmental fluctuations.
    Matched MeSH terms: Tilapia/genetics*
  3. Ya'cob Z, Takaoka H, Low VL, Sofian-Azirun M
    Acta Trop, 2017 May;169:133-141.
    PMID: 28185824 DOI: 10.1016/j.actatropica.2017.02.005
    A black fly species of the Simulium feuerborni species-group of Simulium (Nevermannia) from Cameron Highland, Peninsular Malaysia, previously regarded as S. feuerborni Edwards, originally described from East Java, is described as Simulium pairoti sp. nov. based on complete life stages. High intraspecific variations in the arrangement of the six pupal gill filaments, length of the stalk of the ventral paired filaments, and length of the anterodorsal projection of the cocoon, are noted in this species. This new species is readily distinguished from its congeners by having the characters of male genitalia with simple lamellate ventral plate, short inwardly-twisted styles, several parameral hooks, and a simple narrow median sclerite. Morphological data reported herein plus the chromosomal and molecular data presented elsewhere support S. pairoti as a novel pseudocryptic species.
    Matched MeSH terms: Simuliidae/genetics
  4. Last PR, Naylor GJ, Manjaji-Matsumoto BM
    Zootaxa, 2016 Jul 21;4139(3):345-68.
    PMID: 27470808 DOI: 10.11646/zootaxa.4139.3.2
    The higher-level taxonomy of the stingrays (Dasyatidae) has never been comprehensively reviewed. Recent phylogenetic studies, supported by morphological data, have provided evidence that the group is monophyletic and consists of four major subgroups, the subfamilies Dasyatinae, Neotrygoninae, Urogymninae and Hypolophinae. A morphologically based review of 89 currently recognised species, undertaken for a guide to the world's rays, indicated that most of the currently recognised dasyatid genera are not monophyletic groups. These findings were supported by molecular analyses using the NADH2 gene for about 77 of these species, and this topology is supported by preliminary analyses base on whole mitochondrial genome comparisons. These molecular analyses, based on data generated from the Chondrichthyan Tree of Life project, are the most taxon-rich data available for this family. Material from all of the presently recognised genera (Dasyatis, Pteroplatytrygon and Taeniurops [Dasyatinae]; Neotrygon and Taeniura [Neotrygoninae]; Himantura and Urogymnus [Urogymninae]; and Makararaja and Pastinachus [Hypolophinae]), are included and their validity largely supported. Urogymnus and the two most species rich genera, Dasyatis and Himantura, are not considered to be monophyletic and were redefined based on external morphology. Seven new genus-level taxa are erected (Megatrygon and Telatrygon [Dasyatinae]; Brevitrygon, Fluvitrygon, Fontitrygon, Maculabatis and Pateobatis [Urogymninae], and an additional three (Bathytoshia, Hemitrygon and Hypanus [Dasyatinae]) are resurrected from the synonymy of Dasyatis. The monotypic genus Megatrygon clustered with 'amphi-American Himantura' outside the Dasyatidae, and instead as the sister group of the Potamotrygonidae and Urotrygonidae. Megatrygon is provisionally retained in the Dasyatinae pending further investigation of its internal anatomy. The morphologically divergent groups, Bathytoshia and Pteroplatytrygon, possibly form a single monophyletic group so further investigation is needed to confirm the validity of Pteroplatytrygon. A reclassification of the family Dasyatidae is provided and the above taxa are defined based on new morphological data.
    Matched MeSH terms: Skates (Fish)/genetics
  5. Vale FF, Nunes A, Oleastro M, Gomes JP, Sampaio DA, Rocha R, et al.
    Sci Rep, 2017 02 16;7:42471.
    PMID: 28205536 DOI: 10.1038/srep42471
    Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
    Matched MeSH terms: Prophages/genetics*
  6. Abdul Majid MA, Mahboob T, Mong BG, Jaturas N, Richard RL, Tian-Chye T, et al.
    PLoS One, 2017;12(2):e0169448.
    PMID: 28212409 DOI: 10.1371/journal.pone.0169448
    Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public.
    Matched MeSH terms: Amoeba/genetics
  7. McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, et al.
    J Pathol, 2019 02;247(2):214-227.
    PMID: 30350370 DOI: 10.1002/path.5184
    Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Breast Neoplasms/genetics*; Biomarkers, Tumor/genetics*; Tumor Suppressor Protein p53/genetics; Neoplasms, Complex and Mixed/genetics*; Neurofibromin 1/genetics; PTEN Phosphohydrolase/genetics; Class I Phosphatidylinositol 3-Kinases/genetics
  8. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Entamoeba histolytica/genetics*; Membrane Proteins/genetics*; Protozoan Proteins/genetics*; HSP70 Heat-Shock Proteins/genetics; rho GTP-Binding Proteins/genetics; Calreticulin/genetics; Metabolic Networks and Pathways/genetics
  9. Kho KL, Tan PE, Tay ST
    J Med Entomol, 2019 02 25;56(2):547-552.
    PMID: 30304529 DOI: 10.1093/jme/tjy168
    High seropositivity to Rickettsia conorii and Rickettsia felis has been reported in Malaysian indigenous community living in settlements adjacent to forest areas. The current study was conducted to determine the type and distribution of rickettsiae in feeding and questing ticks that were collected from a forest reserve area at Kuala Lompat in Pahang, Malaysia. Using PCR assays targeting citrate synthase (gltA), outer membrane protein A (ompA) and B (ompB) genes, rickettsiae were detected from approximately one-third of 98 ticks (mainly Dermacentor and Haemaphysalis spp.) collected from the forest reserve. BLAST analysis reveals the predominance of Rickettsia sp. RF2125 in both feeding and questing ticks and Rickettsia sp. TCM1 in the questing ticks. Sequences exhibiting close genetic relationship with Rickettsia raoultii, Rickettsia tamurae, Rickettsia heilongjiangensis, and Rickettsia asiatica were also detected from the ticks. This study highlights the diversity of rickettsial species and potential tick vectors which may contribute to the high seropositivity observed among the local communities.
    Matched MeSH terms: Rickettsieae/genetics
  10. Chin TF, Ibrahim K, Thirunavakarasu T, Azanan MS, Oh L, Lum SH, et al.
    Fetal Pediatr Pathol, 2018 Aug;37(4):243-253.
    PMID: 30273079 DOI: 10.1080/15513815.2018.1492054
    BACKGROUND: Survivors of childhood cancer are at risk of developing a second malignancy. One possible mechanism for neoplastic transformation of cells is through induction of persistent genomic instability. This study aims to seek evidence of chromosomal instability in long-term childhood leukemia survivors (CLS) in one of the largest pediatric academic oncology centers in South East Asia.

    METHODS: 50 asymptomatic (subjects have remained leukemia-free since treatment cessation) CLS and 50 healthy controls were recruited in this cross-sectional study. Of 50 CLS, 44 had acute lymphoblastic leukemia and 6 had acute myeloid leukemia. G-banded karyotyping was performed on unstimulated peripheral blood leukocytes of all subjects.

    RESULTS: CLS had significantly higher occurrence of karyotypic abnormalities compared to controls. Five CLS harbored six nonclonal abnormalities (mostly aneuploidy) while none were found in controls.

    CONCLUSION: Subpopulations with nonclonal chromosomal aberrations were present in peripheral blood leukocytes of our cohort of childhood leukemia long-term survivors.

    Matched MeSH terms: Genomic Instability/genetics*
  11. Azhari NN, Ramli SNA, Joseph N, Philip N, Mustapha NF, Ishak SN, et al.
    Acta Trop, 2018 Dec;188:68-77.
    PMID: 30145261 DOI: 10.1016/j.actatropica.2018.08.020
    Leptospirosis is caused by the spirochetal bacterium Leptospira of which rodents are considered the most important reservoir. This study aims to determine and characterize virulent Leptospira species among rodents and small mammals found in human settlements and recreational spots within the Hulu Langat and Gombak districts of Selangor, Malaysia; regions that frequently report probable human leptospirosis cases. Molecular analysis revealed an overall Leptospira detection rate of 14.3% among the 266 small mammals captured, and the human settlements were found to have the highest number of isolates (15.1%), followed by recreational sites (14.5%). The molecular characterization conducted based on the lipL32, secY genes and MLST revealed that the strains belonged to four different species, including; Leptospira interrogans (29; 76.3%; ST50, ST238, ST243), L. kirschneri (5; 13.15%; ST110), L. borgpetersenii (3; 8%; ST143) and L. weilii (1; 2.63%; ST242). The study revealed genotypes of circulating strains among small mammals in Malaysia, which include Leptospira locus ST110 L. kirschneri, ST 50 L. interrogans, ST143 L. borgpetersenii and ST242 L. weilii. Among the small mammals studied, 17/105 (16.2%) Rattus norvegicus, 7/59 (11.9%) of Rattus rattus, 5/24 (20.8%) of Maxomys whiteheadi, 4/18 (22.2%) of Sundamys muelleri, 2/22 (9%), Tupaia gliss, 2/16 (12.5%) Rattus tiomanicus and 1/4 (25%) of Suncus murinus carried pathogenic leptospires. The data from the present study may imply that, in addition to rodents, other small mammals also serve as maintenance hosts for Leptospira. Hence, much remains unknown about Leptospira maintenance hosts, and there is need for further investigation to ascertain the prevailing serovars of pathogenic Leptospira in Malaysia. This will assist in the development of efficient diagnostic assays with improved microscopic agglutination test (MAT) panels, and in the implementation of suitable prevention and control measures.
    Matched MeSH terms: Leptospira/genetics*
  12. Sajali N, Wong SC, Hanapi UK, Abu Bakar Jamaluddin S, Tasrip NA, Mohd Desa MN
    J Food Sci, 2018 Oct;83(10):2409-2414.
    PMID: 30184265 DOI: 10.1111/1750-3841.14338
    High-quality DNA extracts are imperative for downstream applications in molecular identification. Most processed food products undergo heat treatments causing DNA degradation, which hampers application of DNA-based techniques for food authentication. Moreover, the presence of inhibitors in processed food products is also problematic, as inhibitors can impede the process of obtaining high qualities and quantities of DNA. Various approaches in DNA extraction and factors in structure and texture of various food matrices affecting DNA extraction are explained in this review.
    Matched MeSH terms: DNA/genetics
  13. Khoo JJ, Ishak SN, Lim FS, Mohd-Taib FS, Khor CS, Loong SK, et al.
    J Med Entomol, 2018 10 25;55(6):1642-1647.
    PMID: 30137379 DOI: 10.1093/jme/tjy122
    The Borrelia genus consists of spirochete bacteria known to cause Lyme disease (LD) and relapsing fever in humans. Borrelia pathogens are commonly transmitted via arthropod vectors such as ticks, mites, or lice. Here, we report the molecular screening of LD group Borrelia sp. from ticks (Acari: Ixodidae) collected from rodents trapped in recreational forests and a semiurban residential area in the Selangor state in Malaysia. Of 156 adult ticks surveyed, 72 ticks were determined as positive for Borrelia sp. by polymerase chain reaction (PCR). All Borrelia PCR-positive ticks belonged to the Ixodes granulatus Supino species. Borrelia sp. was not detected in other tick species examined, including Dermacentor sp. and Amblyomma sp. ticks. Thirteen Borrelia PCR-positive tick samples were selected for further sequence analyses. Phylogenetic analyses of partial flaB gene sequences revealed that the Borrelia sp. were closely related to the LD group borreliae, Borrelia yangtzensis; a novel Borrelia genospecies reported in East Asian countries including Japan, Taiwan, and China. To our knowledge, this is the first report of Borrelia sp. related to Borrelia yangtzensis detected in Malaysia and Southeast Asia. The zoonotic potential of the Borrelia sp. reported here merits further investigation, as it may explain the previously reported serological evidence for borrelial infections in Malaysia.
    Matched MeSH terms: Borrelia/genetics
  14. Ali EZ, Zakaria Y, Mohd Radzi MA, Ngu LH, Jusoh SA
    Biomed Res Int, 2018;2018:4320831.
    PMID: 30175132 DOI: 10.1155/2018/4320831
    Ornithine transcarbamylase deficiency (OTCD), an X-linked disorder that results from mutations in the OTC gene, causes hyperammonemia and leads to various clinical manifestations. Mutations occurring close to the catalytic site of OTCase can cause severe OTCD phenotypes compared with those caused by mutations occurring on the surface of this protein. In this study, we report two novel OTC missense mutations, Q171H and N199H, found in Malaysian patients. Q171H and N199H caused neonatal onset OTCD in a male and late OTCD in a female, respectively. In silico predictions and molecular docking were performed to examine the effect of these novel mutations, and the results were compared with other 30 known OTC mutations. In silico servers predicted that Q171H and N199H, as well as 30 known missense mutations, led to the development of OTCD. Docking analysis indicated that N-(phosphonoacetyl)-L-ornithine (PALO) was bound to the catalytic site of OTCase mutant structure with minimal conformational changes. However, the mutations disrupted interatomic interactions in the catalytic site. Therefore, depending on the severity of disruption occurring at the catalytic site, the mutation may affect the efficiency of mechanism and functions of OTCase.
    Matched MeSH terms: Ornithine Carbamoyltransferase Deficiency Disease/genetics*
  15. Du YH, Li Y, Wang RL, Wang HF, Su J, Xu BL, et al.
    Zhonghua Yu Fang Yi Xue Za Zhi, 2018 Nov 06;52(11):1164-1167.
    PMID: 30419702 DOI: 10.3760/cma.j.issn.0253-9624.2018.11.013
    Objective: To confirm the laboratory diagnosis of dengue bordline cases reported in Henan Province and trace its origin from molecular level in 2017. Methods: The study samples were blood samples (3-5 ml), which came from 8 suspected cases of dengue fever reported in the 2017 direct reporting system of Henan provincial infectious disease monitoring network. Meanwhile, case investigation was conducted according to National dengue fever surveillance programme. Serum were separated from blood samples and tested for Dengue NS1 antigen, IgM & IgG antibodies, and dengue RNA. According to dengue diagnosis criteria, confirmed cases were identified by testing results. Samples carried dengue RNA performed for real-time PCR genotyping and amplification of E gene. Then, the amplicons were sequenced and homological and phylogenetic analyses were constructed. Results: 8 serum samples of suspected dengue cases were collected in Henan Province, 2017. Six of them were diagnosed as dengue confirmed cases. All the dengue confirmed cases belonged to outside imported cases, 5 of them were positive by dengue RNA testing. Genotyping results showed there were 1 DENV1 case, 2 DENV2 cases and 2 DENV3 cases. A DENV2 case and a DENV3 case of this study were traced its origin successfully. The sequence of Pakistan imported DENV2 case belongs to cosmopolitan genotype, which was the most consistent with Pakistan's DENV2 KJ010186 in 2013 (identity 99.0%). The sequence of Malaysia imported DENV3 case belongs to genotype I, which was the most consistent with Singapore's DENV3 KX224276 in 2014(identity 99.0%). Conclusion: The laboratory diagnosis and molecular traceability of dengue cases in Henan Province in 2017 confirmed that all cases were imported and did not cause local epidemics.
    Matched MeSH terms: Dengue Virus/genetics*
  16. Takaoka H, Low VL, Tan TK, Sofian-Azirun M, Chen CD, Lau KW, et al.
    Acta Trop, 2019 Feb;190:320-328.
    PMID: 30496721 DOI: 10.1016/j.actatropica.2018.11.025
    Simulium pumatense sp. nov. is described from Vietnam, and is placed in the Simulium feuerborni species-group of the subgenus Simulium (Nevermannia) Enderlein. Its morphological characteristics include the relatively smaller numbers of the following three numerical features: inner teeth of the female mandible (15-18), minute conical processes (16) on the female cibarium, and male upper-eye facets (in 15 vertical columns and 16 horizontal rows). Keys are constructed to distinguish this species from four species of the same group in Vietnam. Our molecular analysis of the DNA barcoding COI gene shows that this species is most closely related to cytoform A of the S. feuerborni complex from Thailand.
    Matched MeSH terms: Simuliidae/genetics
  17. Nna VU, Bakar ABA, Ahmad A, Mohamed M
    Andrology, 2019 01;7(1):110-123.
    PMID: 30515996 DOI: 10.1111/andr.12567
    BACKGROUND: Metformin has long been used for glycemic control in diabetic state. Recently, other benefits of metformin beyond blood glucose regulation have emerged.

    OBJECTIVES: To investigate the effect of metformin on the expression of testicular steroidogenesis-related genes, spermatogenesis, and fertility of male diabetic rats.

    MATERIALS AND METHODS: Eighteen adult male Sprague Dawley rats were divided into three groups, namely normal control (NC), diabetic control (DC), and metformin-treated (300 mg/kg body weight/day) diabetic rats (D+Met). Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.), followed by oral treatment with metformin for four weeks.

    RESULTS: Diabetes decreased serum and intratesticular testosterone levels and increased serum but not intratesticular levels of luteinizing hormone. Sperm count, motility, viability, and normal morphology were decreased, while sperm nuclear DNA fragmentation was increased in DC group, relative to NC group. Testicular mRNA levels of androgen receptor, luteinizing hormone receptor, cytochrome P450 enzyme (CYP11A1), steroidogenic acute regulatory (StAR) protein, 3β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD, as well as the level of StAR protein and activities of CYP11A1, 3β-HSD, and 17β-HSD, were decreased in DC group. Similarly, decreased activities of epididymal antioxidant enzymes and increased lipid peroxidation were observed in DC group. Consequently, decreased litter size, fetal weight, mating and fertility indices, and increased pre- and post-implantation losses were recorded in DC group. Following intervention with metformin, we observed increases in serum and intratesticular testosterone levels, Leydig cell count, improved sperm parameters, and decreased sperm nuclear DNA fragmentation. Furthermore, mRNA levels and activities of steroidogenesis-related enzymes were increased, with improved fertility outcome.

    DISCUSSION AND CONCLUSION: Diabetes mellitus is associated with dysregulation of steroidogenesis, abnormal spermatogenesis, and fertility decline. Controlling hyperglycemia is therefore crucial in preserving male reproductive function. Metformin not only regulates blood glucose level, but also preserves male fertility in diabetic state.

    Matched MeSH terms: Cholesterol Side-Chain Cleavage Enzyme/genetics; Diabetes Mellitus, Experimental/genetics*; Hydroxysteroid Dehydrogenases/genetics; Infertility, Male/genetics*; Phosphoproteins/genetics; Receptors, Androgen/genetics; Receptors, LH/genetics
  18. Chuah C, Gobert GN, Latif B, Heo CC, Leow CY
    Acta Trop, 2019 Feb;190:137-143.
    PMID: 30448471 DOI: 10.1016/j.actatropica.2018.11.012
    Schistosomiasis, a neglected tropical parasitic disease caused by the trematode flatworms of the genus Schistosoma, affects approximately 207 million people worldwide. Among the five main species infecting humans, Schistosoma mansoni and S. japonicum are responsible for the majority of hepatointestinal schistosomiasis. Human settlements near fresh water sites that lack proper sanitary systems often contribute to the transmission of disease. This risk particularly impacts on travellers or immigrants who come into contact with larvae-contaminated water. This review discusses the central features of schistosomiasis; including clinical manifestations, diagnosis, treatments, and the preventive measures available for the control of this disease. The description of the Malaysian schistosome species Schistosoma malayensis and the current status of schistosomiasis in Malaysia including the compilation of cases diagnosed from 1904 to 2015 are also discussed in this paper.
    Matched MeSH terms: Schistosoma/genetics
  19. Angelopoulou E, Paudel YN, Piperi C
    Pharmacol Res, 2019 12;150:104515.
    PMID: 31707035 DOI: 10.1016/j.phrs.2019.104515
    Parkinson's disease (PD) is a multifactorial disorder, attributed to a complex interplay between genetic and epigenetic factors. Although the exact etiology of the disease remains elusive, dysregulation of signaling pathways implicated in cell survival, apoptosis, protein aggregation, mitochondrial dysfunction, autophagy, oxidative damage and neuroinflammation, contributes to its pathogenesis. MicroRNAs (miRs) are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRs in the brain that participates in neurogenesis, synapse morphology, neurotransmission, inflammation, autophagy and mitochondrial function. Accumulating pre-clinical evidence shows that miR-124 may act through calpain 1/p25/cyclin-dependent kinases 5 (CDK5), nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Bcl-2-interacting mediator of cell death (Bim), 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)-mediated pathways to regulate cell survival, apoptosis, autophagy, mitochondrial dysfunction, oxidative damage and neuroinflammation in PD. Moreover, clinical evidence indicates that reduced plasma miR-124 levels may serve as a potential diagnostic biomarker in PD. This review provides an update of the pathogenic implication of miR-124 activity in PD and discusses its targeting potential for the development of future therapeutic strategies.
    Matched MeSH terms: Parkinson Disease/genetics*
  20. Low VL, Tan TK, Khoo JJ, Lim FS, AbuBakar S
    Acta Trop, 2020 Feb;202:105282.
    PMID: 31778642 DOI: 10.1016/j.actatropica.2019.105282
    Rickettsioses are emerging, and re-emerging diseases caused by obligate intracellular arthropod-borne bacteria that infect humans and animals worldwide. Various rickettsiae such as Orientia, Rickettsia, Anaplasma and Ehrlichia have been circulated in companion, domesticated and wild animals through bites of infected ticks, fleas, lice or mites. This review summarizes the infections of rickettsiae, including the newly discovered regional species Rickettsia thailandii, Candidatus Rickettsia sepangensis, Candidatus Rickettsia johorensis, Candidatus Rickettsia laoensis, Candidatus Rickettsia mahosotii, Candidatus Rickettsia khammouanensis, Candidatus Anaplasma pangolinii, and other novel genotypes in vectors, humans and animals in Southeast Asia. Issues on some unidentified rickettsiae that elicit immune responses and production of antibodies that are cross-reactive with the antigens used are discussed. Knowledge gaps which required attention are also identified in this review.
    Matched MeSH terms: Rickettsia/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links