Displaying publications 361 - 380 of 676 in total

Abstract:
Sort:
  1. Ismail MI, Wei TS, Hair-Bejo M, Omar AR
    Arch Virol, 2020 Dec;165(12):2777-2788.
    PMID: 32964293 DOI: 10.1007/s00705-020-04812-2
    Besides the vaccine strains, the Malaysian variant (MV) and QX-like are the predominant IBVs detected on commercial poultry farms. These two virus strains are distinct based on genomic and pathogenicity studies. In this study, we determined the sequence of the S1 gene and compared the pathogenicity of serial passage 70 (P70) of Malaysian QX-like (QX/P70) and MV (MV/P70) strains with that of their respective wild-type viruses. The nucleotide and amino acid sequences of the complete S1 genes of QX/P70 and MV/P70 showed 1.4 to 1.6% and 3.0 to 3.3% variation, respectively, when compared to the wild-type virus. Most of the mutations were insertions and substitutions in the hypervariable regions (HVRs), primarily in HVR 3. Furthermore, selection pressure analysis showed that both viruses are under purifying selection. A pathogenicity study in specific-pathogen-free (SPF) chickens showed a reduction in respiratory and kidney lesions in chickens inoculated with MV/P70, but not with QX/P70, when compared to the respective wild-type viruses. However, MV/P70 is still pathogenic and can cause ciliary damage. In conclusion, the MV IBV strain is more responsive than the QX-like IBV strain following the attenuation process used for the development of a live attenuated IBV vaccine.
    Matched MeSH terms: Infectious bronchitis virus/pathogenicity
  2. Borucinska JD, Caira JN
    J Fish Dis, 2006 Jul;29(7):395-407.
    PMID: 16866923
    Lesions associated with two species of tapeworms within the digestive tract of wild-caught specimens of the bull shark, Carcharhinus leucas, and the sicklefin weasel shark, Hemigaleus microstoma, from Malaysian Borneo are described. Portions of the glandular stomach and pyloric gut with parasites were removed and fixed in 10% formalin buffered in sea water. Whole mounts, histological sections of tissues with and without worms in situ, and scanning electron microscopy images of detached worms were examined. Both species of cestodes belonged to the trypanorhynch family Tentaculariidae. Heteronybelinia estigmena was found in large numbers parasitizing the pyloric gut of C. leucas; an unidentified tentaculariid was found in relatively small numbers in both the glandular stomach and pyloric gut of H. microstoma. Both species burrowed their scoleces deeply in the mucosa and attached via hooked tentacles and unciniform microtriches of the scolex. The lesions induced by the parasites were marked in both sharks and ranged from acute necrotizing to chronic granulomatous gastroenteritis. Regenerative hyperplasia and intestinal metaplasia of gastric epithelium were also present. The severity and character of pathology was causally linked to the intensity of infection, the attachment mode of the parasites, and to the anatomophysiological relationships within the gut of the host shark.
    Matched MeSH terms: Cestoda/pathogenicity*
  3. Puspitasari Y, Salleh A, Zamri-Saad M
    BMC Vet Res, 2020 Jun 09;16(1):186.
    PMID: 32517749 DOI: 10.1186/s12917-020-02415-2
    BACKGROUND: Pasteurella multocida B:2 causes haemorrhagic septicaemia in cattle and buffaloes. However, buffaloes are found to be more susceptible to the infection than cattle. Upon infection, the pathogen rapidly spread from the respiratory tract to the blood circulation within 16-72 h, causing septicaemia. So far, limited study has been conducted to evaluate the response of endothelial cells of buffalo towards P. multocida B:2 and its lipopolysaccharide (LPS). This study aimed to evaluate the ultrastructural changes in the aortic endothelium of buffaloes (BAEC) following exposure to P. multocida B:2 and its endotoxin. The endothelial cells were harvested from the aorta of healthy buffaloes and were prepared as monolayer cell cultures. The cultures were divided into 3 groups before Group 1 was inoculated with 107 cfu/ml of whole cell P. multocida B:2, Group 2 with LPS, which was extracted earlier from 107 cfu/ml of P. multocida B:2 and Group 3 with sterile cell culture medium. The cells were harvested at 0, 6, 12, 18, 24, 36, and 48 h post-inoculation for assessment of cellular changes using transmission electron microscopy.

    RESULTS: The BAEC of Groups 1 and 2 demonstrated moderate to severe endothelial lysis, suggestive of acute cellular injury. In general, severity of the ultrastructural changes increased with the time of incubation but no significant difference (p > 0.05) in the severity of the cellular changes between Groups 1 and 2 was observed in the first 18 h. The severity of lesions became significant (p 

    Matched MeSH terms: Pasteurella multocida/pathogenicity*
  4. Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, et al.
    Cancer Invest, 2019;37(8):393-414.
    PMID: 31502477 DOI: 10.1080/07357907.2019.1660887
    Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
    Matched MeSH terms: Oncolytic Viruses/pathogenicity*
  5. Tan EW, Tan KY, Phang LV, Kumar PV, In LLA
    PLoS One, 2019;14(7):e0219912.
    PMID: 31335895 DOI: 10.1371/journal.pone.0219912
    Vaccine administration via the oral route is preferable to parenteral routes due to ease of administration. To date, most available oral vaccines comprises of live attenuated pathogens as oppose to peptide-based vaccines due to its low bioavailability within the gastrointestinal (GI) tract. Over the years, probiotic-based peptide delivery vehicles comprising of lactic acid bacteria such as Lactococcus lactis has emerged as an interesting alternative due to its generally recognized as safe (GRAS) status, a fully sequenced genome, transient gut colonization time, and is an efficient cellular factory for heterologous protein production. However, its survivability through the GI tract is low, thus better delivery approaches are being explored to improve its bioavailability. In this study, we employ the incorporation of a double coated mucoadhesive film consisting of sodium alginate and Lycoat RS 720 film as the inner coat. The formulated film exhibits good mechanical properties of tensile strength and percent elongation for manipulation and handling with an entrapment yield of 93.14±2.74%. The formulated mucoadhesive film is subsequently loaded into gelatin capsules with an outer enteric Eudragit L100-55 coating capable of a pH-dependent breakdown above pH 5.5 to protect against gastric digestion. The final product and unprotected controls were subjected to in vitro simulated gastrointestinal digestions to assess its survivability. The product demonstrated enhanced protection with an increase of 69.22±0.67% (gastric) and 40.61±8.23% (intestinal) survivability compared to unprotected controls after 6 hours of sequential digestion. This translates to a 3.5 fold increase in overall survivability. Owing to this, the proposed oral delivery system has shown promising potential as a live gastrointestinal vaccine delivery host. Further studies involving in vivo gastrointestinal survivability and mice immunization tests are currently being carried out to assess the efficacy of this novel oral delivery system in comparison to parenteral routes.
    Matched MeSH terms: Lactococcus lactis/pathogenicity
  6. Singh P, Mazumdar P, Harikrishna JA, Babu S
    Planta, 2019 Nov;250(5):1387-1407.
    PMID: 31346804 DOI: 10.1007/s00425-019-03246-8
    MAIN CONCLUSION: Rice sheath blight research should prioritise optimising biological control approaches, identification of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection. Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To move forward with effective crop protection against sheath blight, it is important to review the published information related to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expression, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.
    Matched MeSH terms: Rhizoctonia/pathogenicity*
  7. Osman AY, Kadir AA, Jesse FF, Saharee AA
    Microb Pathog, 2019 Nov;136:103669.
    PMID: 31445124 DOI: 10.1016/j.micpath.2019.103669
    Brucella melitensis is one of the leading zoonotic pathogens with significant economic implications in animal industry worldwide. Lipopolysaccharide, however, remains by far the major virulence with substantial role in diseases pathogenesis. Nonetheless, the effect of B. melitensis and its lipopolysaccharide on immunopathophysiological aspects largely remains an enigma. This study examines the effect of B.melitensis and its lipopolysaccharide on immunopathophysiological parameters following experimental infection using mouse model. Eighty four (n = 84) mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into three groups. Group 1-2 (n = 72) were orally inoculated with 0.4 mL containing 109 CFU/mL of B. melitensis and its LPS, respectively. Group 3 (n = 12) was challenged orally with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-infection. We hereby report that B.melitensis infected group demonstrated significant clinical signs and histopathological changes than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL-6) and antibody levels (IgM and IgG) with varying degrees of predominance in LPS infected group than B. melitensis infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS groups throughout the study period. Moreover, in B. melitensis infected group, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems thereby confirming the infection and transmission dynamics. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in a mouse model after oral inoculation with B. melitensis and its lipopolysaccharide.
    Matched MeSH terms: Brucella melitensis/pathogenicity*
  8. Wong MY, Govender NT, Ong CS
    BMC Res Notes, 2019 Sep 24;12(1):631.
    PMID: 31551084 DOI: 10.1186/s13104-019-4652-y
    OBJECTIVE: Basal stem rot disease causes severe economic losses to oil palm production in South-east Asia and little is known on the pathogenicity of the pathogen, the basidiomyceteous Ganoderma boninense. Our data presented here aims to identify both the house-keeping and pathogenicity genes of G. boninense using Illumina sequencing reads.

    DESCRIPTION: The hemibiotroph G. boninense establishes via root contact during early stage of colonization and subsequently kills the host tissue as the disease progresses. Information on the pathogenicity factors/genes that causes BSR remain poorly understood. In addition, the molecular expressions corresponding to G. boninense growth and pathogenicity are not reported. Here, six transcriptome datasets of G. boninense from two contrasting conditions (three biological replicates per condition) are presented. The first datasets, collected from a 7-day-old axenic condition provide an insight onto genes responsible for sustenance, growth and development of G. boninense while datasets of the infecting G. boninense collected from oil palm-G. boninense pathosystem (in planta condition) at 1 month post-inoculation offer a comprehensive avenue to understand G. boninense pathogenesis and infection especially in regard to molecular mechanisms and pathways. Raw sequences deposited in Sequence Read Archive (SRA) are available at NCBI SRA portal with PRJNA514399, bioproject ID.

    Matched MeSH terms: Ganoderma/pathogenicity
  9. Molnár K, Székely C, Mohamed K, Shaharom-Harrison F
    Dis Aquat Organ, 2006 Mar 2;68(3):209-18.
    PMID: 16610586
    Cage-cultured sutchi catfish Pangasius hypophthalmus (Sauvage, 1878), a favourite food fish in Southeast Asia, proved to be infected by 6 myxozoan species. Three species belonged to the genus Hennegoides (H. berlandi, H. malayensis, and H. pangasii), 1 to Henneguya (H. shariffi) and 2 to Myxobolus (M. baskai, and M. pangasii). Five myxozoans infected the gills and 1 was found on the spleen. Myxozoans infecting the gills were characterised by a specific site selection. H. shariffi sp. n. and H. berlandi sp. n. formed plasmodia in the multi-layered epithelium of the gill filaments. Of the 2 vascular species H. pangasii sp. n. developed in the gill arteries, while M. baskai sp. n. infected the capillary network of the gill lamellae. Plasmodia of H. malayensis sp. n. were found inside the cartilaginous gill rays of the filaments. Large plasmodia of M. pangasii sp. n. were located in a groove of the spleen but they affected only the serosa layer covering the spleen.
    Matched MeSH terms: Eukaryota/pathogenicity
  10. Fadhilah AS, Kai TH, Lokman HI, Yasmin NAR, Hafandi A, Hasliza AH, et al.
    Poult Sci, 2020 Jun;99(6):2937-2943.
    PMID: 32475428 DOI: 10.1016/j.psj.2020.01.026
    Infectious bronchitis virus (IBV) infection is highly infectious respiratory disease in poultry industry with significant economic importance. The prevalence of IBV in quail industry in Malaysia was not well documented; therefore, its actual role in the epidemiology of the disease is relatively unknown. This study was to determine the susceptibility of Japanese quail, as one of the species in commercial poultry industry, toward IBV. In addition, it will also give a potential impact on the overall health management in the quail industry even though it had been established that quail are resistant to diseases affecting poultry. Moreover, to the best of our knowledge, it is the first experimental study on IBV inoculation in quail. In this experimental study, 20 quails were divided into 4 groups (n = 5 for group A, B, and C, n = 5 for control group). The quails in group A, B, and C were infected via intraocular and intranasal routes with 0.2 mL of 10 × 5 EID50 of the virus. Clinical signs, gross lesions, positive detection of virus, and trachea histopathological scoring were used to assess the susceptibility of these Japanese quails. The results have indicated mild ruffled feathers and watery feces in these inoculated birds. Trachea, lung, and kidney were subjected to one-step reverse transcription polymerase chain reaction for virus detection. The virus was found from trachea and lung samples, whereas it was absent from all kidney samples. Only 3 quails were found with gross lesions. There was a significant difference of tracheal lesion by 0.009 ± 0.845 (P < 0.05) within the treatment groups. In summary, Japanese quails might be susceptible to IBV.
    Matched MeSH terms: Infectious bronchitis virus/pathogenicity*
  11. Lim KT, Yeo CC, Suhaili Z, Thong KL
    Jpn J Infect Dis, 2012;65(6):502-9.
    PMID: 23183202
    Staphylococcus aureus is a persistent human pathogen responsible for a variety of infections ranging from soft-tissue infections to bacteremia. The objective of this study was to determine genetic relatedness between methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. We isolated 35 MRSA and 21 MSSA strains from sporadic cases at the main tertiary hospital in Terengganu, Malaysia, screening them for the presence of virulence genes. Their genetic relatedness was determined by accessory gene regulator (agr) types, PCR-restriction fragment length polymorphism (RFLP) of the coa gene, pulsed-field gel electrophoresis (PFGE), S. aureus protein A (spa), and multilocus-sequence typing (MLST). We found that 57% of MRSA and 43% of MSSA strains harbored enterotoxin genes. The majority (87.5%) of the strains were agr type I. PCR-RFLP and PFGE genotyping of the coa gene revealed that MRSA strains were genetically related, whereas MSSA strains had higher heterogeneity. The combined genotype, MLST-spa type ST239-t037, was shared among MRSA and MSSA strains, indicating that MRSA strains could have evolved from MSSA strains. Two combined MLST-spa types were present in MRSA strains, whereas 7 different MLST-spa types were detected in MSSA strains, including 2 combined types (ST779-t878 and ST1179-t267) that have not been reported in Malaysia. In conclusion, enterotoxin genes were more prevalent in MRSA than in MSSA strains in the Terengganu hospital. The MSSA strains were genetically more diverse than the MRSA strains.
    Matched MeSH terms: Staphylococcus aureus/pathogenicity
  12. Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, et al.
    Sci Rep, 2020 04 09;10(1):6115.
    PMID: 32273550 DOI: 10.1038/s41598-020-63150-0
    Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
    Matched MeSH terms: Herpesvirus 4, Human/pathogenicity
  13. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Enterococcus faecalis/pathogenicity
  14. Husin NA, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D, Azmi ANN
    Sci Rep, 2020 04 15;10(1):6464.
    PMID: 32296108 DOI: 10.1038/s41598-020-62275-6
    Ground-based LiDAR also known as Terrestrial Laser Scanning (TLS) technology is an active remote sensing imaging method said to be one of the latest advances and innovations for plant phenotyping. Basal Stem Rot (BSR) is the most destructive disease of oil palm in Malaysia that is caused by white-rot fungus Ganoderma boninense, the symptoms of which include flattening and hanging-down of the canopy, shorter leaves, wilting green fronds and smaller crown size. Therefore, until now there is no critical investigation on the characterisation of canopy architecture related to this disease using TLS method was carried out. This study proposed a novel technique of BSR classification at the oil palm canopy analysis using the point clouds data taken from the TLS. A total of 40 samples of oil palm trees at the age of nine-years-old were selected and 10 trees for each health level were randomly taken from the same plot. The trees were categorised into four health levels - T0, T1, T2 and T3, which represents the healthy, mildly infected, moderately infected and severely infected, respectively. The TLS scanner was mounted at a height of 1 m and each palm was scanned at four scan positions around the tree to get a full 3D image. Five parameters were analysed: S200 (canopy strata at 200 cm from the top), S850 (canopy strata at 850 cm from the top), crown pixel (number of pixels inside the crown), frond angle (degree of angle between fronds) and frond number. The results taken from statistical analysis revealed that frond number was the best single parameter to detect BSR disease as early as T1. In classification models, a linear model with a combination of parameters, ABD - A (frond number), B (frond angle) and D (S200), delivered the highest average accuracy for classification of healthy-unhealthy trees with an accuracy of 86.67 per cent. It also can classify the four severity levels of infection with an accuracy of 80 per cent. This model performed better when compared to the severity classification using frond number. The novelty of this research is therefore on the development of new approach to detect and classify BSR using point clouds data of TLS.
    Matched MeSH terms: Ganoderma/pathogenicity
  15. Puspitasari Y, Annas S, Adza-Rina MN, Zamri-Saad M
    Microb Pathog, 2019 Jun;131:170-174.
    PMID: 30978429 DOI: 10.1016/j.micpath.2019.04.012
    Pasteurella multocida B:2 is a Gram-negative organism causing haemorrhagic septicaemia (HS) in buffaloes. It causes severe pulmonary infection, leading to infiltration of numerous macrophages and neutrophils. Despite the inflammatory response, buffaloes succumb to HS. This study aims to evaluate the in-vitro efficacy of macrophages and neutrophils of buffalo following exposure to P. multocida B:2. In-vitro infections were done using 107 cfu/ml of P. multocida B:2 for Group 1, Escherichia coli for Group 2 and Mannhaemia haemolytica A:2 for Group 3 cells. The inoculated cell cultures were harvested at 0, 30, 60 and 120 min post-exposure and the phagocytic, killing and cell death rates were determined. Both phagocytosis and killing rates of all bacteria increased over time. Phagocytosis involved between 71% and 73% neutrophils and between 60% and 64% macrophages at 120 min. Killing rate of all bacteria involved between 76% and 79% for neutrophils and between 70% and 74% for macrophages at 120 min. Death rate of neutrophils ranged between 67% in Group 3, and 88% in Group 1 at 120 min, significantly (p  0.05) than Group 2. Similar pattern was observed for death rate of macrophages. The phagocytosis and killing rates of P. multocida B:2 were similar to other bacterial species used in this study but more neutrophils and macrophages were dead following infection by P. multocida B:2 than M. haemolytica A:2.
    Matched MeSH terms: Pasteurella multocida/pathogenicity
  16. Hussein EA, Hair-Bejo M, Liew PS, Adamu L, Omar AR, Arshad SS, et al.
    Microb Pathog, 2019 Apr;129:195-205.
    PMID: 30738178 DOI: 10.1016/j.micpath.2019.01.049
    Infectious bursal disease is one of an OIE list of notifiable diseases. Chicken is the only host that manifests clinical signs and its pathogenicity is correlated with the distribution of antigens in organs. This study was conducted to determine disease pathogenesis and virus tissue tropism by in situ PCR, immunoperoxidase staining (IPS), and HE staining. Twenty four chickens were infected with very virulent Infectious Bursal Disease Virus (vvIBDV). Fifteen chickens were kept as a control group. Infected chickens were sacrificed at hrs 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). While, control chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Different tissues were collected, fixed in 10% buffered formalin, and processed. At hr 2 pi, virus was detected in intestinal, junction of the proventriculus and gizzard, cecal tonsil, liver, kidney, and bursa of Fabricius. At hr 4 pi, virus reached spleen, and at hr 6 pi, it entered thymus. At hr 12 pi, virus concentration increased in positive tissues. The latest invaded tissue was muscle on day 1 pi. Secondary viraemia occurred during 12-24 h pi. In situ PCR was the most sensitive technique to highlight obscure points of infection in this study.
    Matched MeSH terms: Infectious bursal disease virus/pathogenicity*
  17. Roberts R, Yee PTI, Mujawar S, Lahiri C, Poh CL, Gatherer D
    Sci Rep, 2019 04 01;9(1):5427.
    PMID: 30931960 DOI: 10.1038/s41598-019-41662-8
    Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
    Matched MeSH terms: Enterovirus A, Human/pathogenicity
  18. Al-Maleki AR, Vellasamy KM, Mariappan V, Venkatraman G, Tay ST, Vadivelu J
    Genomics, 2020 01;112(1):501-512.
    PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002
    Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
    Matched MeSH terms: Burkholderia pseudomallei/pathogenicity*
  19. Gharehbolagh SA, Fallah B, Izadi A, Ardestani ZS, Malekifar P, M Borman A, et al.
    PLoS One, 2020;15(8):e0237046.
    PMID: 32817677 DOI: 10.1371/journal.pone.0237046
    Candida africana is a pathogenic species within the Candida albicans species complex. Due to the limited knowledge concerning its prevalence and antifungal susceptibility profiles, a comprehensive study is overdue. Accordingly, we performed a search of the electronic databases for literature published in the English language between 1 January 2001 and 21 March 2020. Citations were screened, relevant articles were identified, and data were extracted to determine overall intra-C. albicans complex prevalence, geographical distribution, and antifungal susceptibility profiles for C. africana. From a total of 366 articles, 41 were eligible for inclusion in this study. Our results showed that C. africana has a worldwide distribution. The pooled intra-C. albicans complex prevalence of C. africana was 1.67% (95% CI 0.98-2.49). Prevalence data were available for 11 countries from 4 continents. Iran (3.02%, 95%CI 1.51-4.92) and Honduras (3.03%, 95% CI 0.83-10.39) had the highest values and Malaysia (0%) had the lowest prevalence. Vaginal specimens were the most common source of C. africana (92.81%; 155 out of 167 isolates with available data). However, this species has also been isolated from cases of balanitis, from patients with oral lesions, and from respiratory, urine, and cutaneous samples. Data concerning the susceptibility of C. africana to 16 antifungal drugs were available in the literature. Generally, the minimum inhibitory concentrations of antifungal drugs against this species were low. In conclusion, C. africana demonstrates geographical variation in prevalence and high susceptibility to antifungal drugs. However, due to the relative scarcity of existing data concerning this species, further studies will be required to establish more firm conclusions.
    Matched MeSH terms: Candida albicans/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links