Displaying publications 3881 - 3900 of 5760 in total

Abstract:
Sort:
  1. Jumin E, Basaruddin FB, Yusoff YBM, Latif SD, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26571-26583.
    PMID: 33484461 DOI: 10.1007/s11356-021-12435-6
    Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy industry. Malaysia has immense potential to develop such an industry due to its location in the equatorial zone and its climatic characteristics with high solar energy resources. However, solar energy accounts for only 2-4.6% of total energy utilization. Recently, in developed countries, various prediction models based on artificial intelligence (AI) techniques have been applied to predict solar radiation. In this study, one of the most recent AI algorithms, namely, boosted decision tree regression (BDTR) model, was applied to predict the changes in solar radiation based on collected data in Malaysia. The proposed model then compared with other conventional regression algorithms, such as linear regression and neural network. Two different normalization techniques (Gaussian normalizer binning normalizer), splitting size, and different input parameters were investigated to enhance the accuracy of the models. Sensitivity analysis and uncertainty analysis were introduced to validate the accuracy of the proposed model. The results revealed that BDTR outperformed other algorithms with a high level of accuracy. The funding of this study could be used as a reliable tool by engineers to improve the renewable energy sector in Malaysia and provide alternative sustainable energy resources.
  2. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
  3. Rak AE, Nasir SNAM, Nor MM, Han DK, Appalasamy S, Abdullah F, et al.
    Environ Sci Pollut Res Int, 2020 Jul;27(20):24772-24785.
    PMID: 32016873 DOI: 10.1007/s11356-020-07923-0
    Corbicula fluminea (C. fluminea) is one of the mollusc species commonly eaten as a popular snack in Kelantan, Malaysia. This species contributes to the local economic activity. However, the handling process of C. fluminea at different processing stages (raw, smoke and selling stages) is believed to have affected the nutritional value in their soft tissue. Hence, this study aims to provide information about the chemical content (moisture, crude fat, ash, crude protein and carbohydrate) of C. fluminea and fatty acid of smoked C. fluminea at different processing stages. Samples were collected from Pasir Mas and Tumpat, Kelantan, Malaysia. The chemical content analysis was carried out based on the Association of Official Analytical Chemists (AOAC) standard procedures. The results have indicated that moisture (80.93 ± 0.37%) and crude fat (10.82 ± 0.21%) in C. fluminea were significantly higher (p 
  4. Khan MF, Latif MT, Amil N, Juneng L, Mohamad N, Nadzir MS, et al.
    Environ Sci Pollut Res Int, 2015 Sep;22(17):13111-26.
    PMID: 25925145 DOI: 10.1007/s11356-015-4541-4
    Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m(-3), respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.
  5. Qureshi MI, Rasli AM, Awan U, Ma J, Ali G, Faridullah, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3467-76.
    PMID: 25242593 DOI: 10.1007/s11356-014-3584-2
    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.
  6. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
  7. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
  8. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
  9. Al Mamun A, Em PP, Hossen MJ, Jahan B, Tahabilder A
    Heliyon, 2023 Mar;9(3):e14212.
    PMID: 36942238 DOI: 10.1016/j.heliyon.2023.e14212
    A lot of people suffer from disability and death due to unintentional road accidents, which also result in the loss of a significant amount of financial assets. Several essential features of Advanced Driver Assistance Systems (ADAS) are being incorporated into vehicles by researchers to prevent road accidents. Lane marking detection (LMD) is a fundamental ADAS technology that helps the vehicle to keep its position in the lane. The current study employs Deep Learning (DL) methodologies and has several research constraints due to various problems. Researchers sometimes encounter difficulties in LMD due to environmental factors such as the variation of lights, obstacles, shadows, and curve lanes. To address these limitations, this study presents the Encode-Decode Instant Segmentation Network (EDIS-Net) as a DL methodology for detecting lane marking under various environmental situations with reliable accuracy. The framework is based on the E-Net architecture and incorporates combined cross-entropy and discriminative losses. The encoding segment was split into binary and instant segmentation to extract information about the lane pixels and the pixel position. DenselyBased Spatial Clustering of Application with Noise (DBSCAN) is employed to connect the predicted lane pixels and to get the final output. The system was trained with augmented data from the Tusimple dataset and then tested on three datasets: Tusimple, CalTech, and a local dataset. On the Tusimple dataset, the model achieved 97.39% accuracy. Furthermore, it has an average accuracy of 97.07% and 96.23% on the CalTech and local datasets, respectively. On the testing dataset, the EDIS-Net exhibited promising results compared to existing LMD approaches. Since the proposed framework performs better on the testing datasets, it can be argued that the model can recognize lane marking confidently in various scenarios. This study presents a novel EDIS-Net technique for efficient lane marking detection. It also includes the model's performance verification by testing in three different public datasets.
  10. Khahro SH, Memon ZA, Yusoff NIM, Gungat L, Yazid MRM
    Environ Sci Pollut Res Int, 2022 Feb;29(7):10771-10781.
    PMID: 34613546 DOI: 10.1007/s11356-021-16499-2
    Roads play a pivotal role in the overall economic growth of any country. Developed countries allocated sufficient budget to make new roads and to maintain the existing roads. They also have a proper pavement management system (PMS) in practice to manage roads, whereas developing countries suffer from budgetary issues to make new roads and maintain the existing road network. Therefore, this paper explores the awareness of PMS via direct and indirect methods in Pakistan with a proposed framework of the low-cost model and pavement maintenance indicators for developing countries. This paper also performs a scientometric assessment of PMS. A detailed literature review has been carried out for this study, followed by a quantitative study from experienced professionals. The scientometric data is collected from the Scopus database from 1975 to 2020, whereas the data for PMS awareness assessment has been collected using questionnaires from different experts working directly and indirectly in the road management sector. The data has been analyzed using the arithmetic mean because of the nature of the questions and scope of the study. The direct method results show that experts are aware of PMS for a new road, but they have no PMS to rehabilitate roads. The indirect method results show that the authorities are applying various components of PMS, but there is no proper PMS in practice. This paper helps decision-makers to make better decisions and policies for improved road maintenance and rehabilitation. The proposed framework in the study can significantly assist the UN-SDG 9 (Facilitate Sustainable Infrastructure in Developing Countries) and 11 (Affordable and Sustainable Transport System).
  11. Zainuddin SA, Abdullah B, Nasir NAM, Abdullah T, Nawi NC, Patwary AK, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24708-24717.
    PMID: 36344894 DOI: 10.1007/s11356-022-23897-7
    Businesses are becoming more conscious of operational risk management practices due to the COVID-19 pandemic. However, some firms practice risk management without fully comprehending how it might help them and their needs. As a result, companies that practice risk management without realizing it are being controlled by the discipline itself. The goal of this study is to look into the epistemic process of risk management practice in the workplace. This phenomenological study interviewed 39 risk management officers, executives, and employees. Data are thematically analyzed. This study discovered five epistemic processes of risk mapping using Foucault's governmentality paradigm. This phenomenological study, interestingly, revealed the black box of risk management practices, as well as the behavior of risk management officers, executives, and risk owners who preferred to monitor the compliance aspects of risk management practices rather than comprehend the capabilities of risk management that could be used within their strategic planning process. Unaware of this black box, organizational actors were blanketed by the organization's culture of fear, which created the impression that the authority was always watching every word said and every action taken. Practically, this study contributes an improved understanding of the real function of risk management that helps them justify the practice and reduce unnecessary fear. The paper concludes with limitations and research recommendations.
  12. Hamed MM, Nashwan MS, Shahid S, Ismail TB, Dewan A, Asaduzzaman M
    Environ Sci Pollut Res Int, 2022 Dec;29(60):91212-91231.
    PMID: 35881284 DOI: 10.1007/s11356-022-22036-6
    Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. Assessment of such changes is particularly important for Southeast Asia (SEA) - home to global largest ecological diversity. Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020-2059) and far (2060-2099) periods were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged from - 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce over most of SEA (ranging from - 1.1 to - 2.0 °C), while isothermality is likely to decrease from - 1.1 to - 4.6%. A decrease in isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual temperature range in the future.
  13. Emon EI, Islam AM, Sobayel MK, Islam S, Akhtaruzzaman M, Amin N, et al.
    Heliyon, 2023 Mar;9(3):e14438.
    PMID: 36950573 DOI: 10.1016/j.heliyon.2023.e14438
    Transition metal di-chalcogenides (TMCDs)-Tungsten disulfide (WS2) exhibit excellent optoelectronic properties such as suitable bandgap, high absorption coefficient, good conductivity, high carrier mobility, etc. to be used as a photovoltaic material for thin-film solar cells. In the present work, we have replaced the traditional buffer CdS and ITO/ZnO window layer in CdTe solar cells with the non-toxic, earth-abundant WS2 buffer and SnO2 window layer, respectively. The SCAPS-1D solar simulator is used to investigate the potentiality of WS2 as buffer material in CdTe solar cells. This numerical study provides a comparison of the performances between the proposed structure: SnO2/WS2/CdTe/Au and the baseline structure: ITO/ZnO/CdS/CdTe/Au. The impacts of the charge carrier generation rate, spectral response, current-voltage characteristics, bulk defect density, defect density at buffer/absorber interface, operating temperature, and capacitance-voltage characteristics on the solar cell performance parameters have also been analyzed. The tolerance level of defect density in WS2 bulk and WS2/CdTe interface are found to be 1017 cm-3 and 1012 cm-3, respectively. The temperature study reveals the poor structural robustness and thermal stability of the proposed cell. The conversion efficiency of the proposed cell has found to be 20.55% at the optimized device structure. Nevertheles, these findings may provide an insight to fabricate viable, environment friendly, and inexpensive CdTe thin-film solar cells.
  14. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
  15. Baqer AA, Nor NSM, Alagely HS, Musa M, Adnan NA
    Pol Merkur Lekarski, 2023;51(1):35-41.
    PMID: 36960898 DOI: 10.36740/Merkur202301105
    OBJECTIVE: Aim: Klebsiella pneumonia has emerged as an increasingly important cause of community-acquired nosocomial infections and many of these strains are highly virulent and exhibit a strong propensity to spread. Infections cause by K. pneumonia produces carbapen¬emase (KPC) enzyme and can be difficult to treat since only a few antibiotics are effective against them. Bacteriophage targeting this strain can be an alternative treatment. Characterisation of bacteriophage is utmost important in assisting the application of bacteriophage in phage therapy.

    PATIENTS AND METHODS: Materials and methods: In the present study, the lytic bacteriophage, k3w7, isolated by the host Klebsiella pneumoniae kP2 was characterised using transmission electron microscope (TEM), plaque assay, and restriction digestive enzyme to investigate mor¬phology, host spectrum, bacteriophage life cycle and stability accordingly.

    RESULTS: Results and conclusions: As shown by TEM, k3w7 was observed to have the characteristic of icosahedral heads 100 nm and contractile sheaths 120 nm suggesting it belongs to the family of myoviridae.The Investigation has done on the phage growth cycle showed a short latent period of 20 min and a burst size of approximately 220 plaque forming units per infected cell. Stability test showed the phage was stable over a wide range of pH and temperatures. According to restriction analysis, k3w7 had 50 -kb double-stranded DNA genome as well as the heterogeneous nature of genetic material. These findings suggest that K3W7 has a potential use in therapy against infections caused by K. pneumonia produces carbapenemase.

  16. Razali RA, Yazid MD, Saim A, Idrus RBH, Lokanathan Y
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835384 DOI: 10.3390/ijms24043974
    Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFβ1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFβ receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 μg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFβ1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFβ receptor component) in comparison to oleuropein. TGFβ1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.
  17. Khodzori FA, Mazlan NB, Chong WS, Ong KH, Palaniveloo K, Shah MD
    Biomolecules, 2023 Mar 06;13(3).
    PMID: 36979419 DOI: 10.3390/biom13030484
    Sponges are aquatic, spineless organisms that belong to the phylum Porifera. They come in three primary classes: Hexactinellidae, Demospongiae, and Calcarea. The Demospongiae class is the most dominant, making up over 90% of sponge species. One of the most widely studied genera within the Demospongiae class is Xestospongia, which is found across Southeast Asian waters. This genus is of particular interest due to the production of numerous primary and secondary metabolites with a wide range of biological potentials. In the current review, the antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antiparasitic, and cytotoxic properties of metabolites from several varieties of Southeast Asian Xestospongia spp. were discussed. A total of 40 metabolites of various natures, including alkaloids, fatty acids, steroids, and quinones, were highlighted in X. bergquistia, X. testudinaria, X. muta, X. exigua, X. ashmorica and X. vansoesti. The review aimed to display the bioactivity of Xestospongia metabolites and their potential for use in the pharmaceutical sector. Further research is needed to fully understand their bioactivities.
  18. Nursyafiqah MT, Siti-Azrin AH, Yaacob NM, Wan-Nor-Asyikeen WA, Zunaina E
    Trop Med Int Health, 2023 Apr;28(4):300-307.
    PMID: 36787961 DOI: 10.1111/tmi.13862
    OBJECTIVE: Intravitreal ranibizumab is one of the anti-vascular endothelial growth factors used for the treatment of diabetic macular oedema, not always successfully. We aimed to identify the factors affecting the changes of central macular thickness after induction treatment with intravitreal ranibizumab, to predict the treatment effect and facilitate early treatment decisions.

    METHODS: Cross-sectional study involving a retrospective record review of diabetic macular oedema patients who received an induction treatment of three monthly 0.5 mg intravitreal ranibizumab injections between 2016 and 2019. Central macular thickness was measured at baseline and 3 months post-treatment. Linear regression was applied to identify the factors associated with the changes of central macular thickness.

    RESULTS: A total of 153 diabetic macular oedema patients were involved in this study. Their mean age was 57.5 ± 7.7 years, 54.9% were female. The mean change of central macular thickness from baseline to 3 months after completed induction treatment of intravitreal ranibizumab was 155.5 ± 137.8 μm. Factors significantly associated with changes of central macular thickness were baseline central macular thickness [b = 0.73; 95% (CI): 0.63, 0.84; p = <0.001] and presence of subretinal fluid [b = 35.43; 95% CI: 3.70, 67.16; p = 0.029].

    CONCLUSION: Thicker baseline central macular thickness and presence of subretinal fluid were the factors significantly associated with greater changes of central macular thickness in diabetic macular oedema patients after receiving three injections of intravitreal ranibizumab.

  19. Podder KK, Chowdhury MEH, Tahir AM, Mahbub ZB, Khandakar A, Hossain MS, et al.
    Sensors (Basel), 2022 Jan 12;22(2).
    PMID: 35062533 DOI: 10.3390/s22020574
    A real-time Bangla Sign Language interpreter can enable more than 200 k hearing and speech-impaired people to the mainstream workforce in Bangladesh. Bangla Sign Language (BdSL) recognition and detection is a challenging topic in computer vision and deep learning research because sign language recognition accuracy may vary on the skin tone, hand orientation, and background. This research has used deep machine learning models for accurate and reliable BdSL Alphabets and Numerals using two well-suited and robust datasets. The dataset prepared in this study comprises of the largest image database for BdSL Alphabets and Numerals in order to reduce inter-class similarity while dealing with diverse image data, which comprises various backgrounds and skin tones. The papers compared classification with and without background images to determine the best working model for BdSL Alphabets and Numerals interpretation. The CNN model trained with the images that had a background was found to be more effective than without background. The hand detection portion in the segmentation approach must be more accurate in the hand detection process to boost the overall accuracy in the sign recognition. It was found that ResNet18 performed best with 99.99% accuracy, precision, F1 score, sensitivity, and 100% specificity, which outperforms the works in the literature for BdSL Alphabets and Numerals recognition. This dataset is made publicly available for researchers to support and encourage further research on Bangla Sign Language Interpretation so that the hearing and speech-impaired individuals can benefit from this research.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links