Displaying publications 21 - 34 of 34 in total

Abstract:
Sort:
  1. Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH
    PeerJ, 2016;4:e2080.
    PMID: 27257555 DOI: 10.7717/peerj.2080
    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
  2. Lim SY, Chan YM, Ramachandran V, Shariff ZM, Chin YS, Arumugam M
    PMID: 33478001 DOI: 10.3390/ijerph18020827
    BACKGROUND: Evidence is growing that a high-acid diet might accelerate the rate of bone loss, and gene polymorphisms such as Interleukin 6 (IL6) -174G/C and -572G/C are related to bone deterioration. However, no study of the interaction between diet and IL6 polymorphisms has been conducted among Asians. Thus, the objective of this study was to determine whether IL6 gene polymorphisms modified the association between dietary acidity and the rate of bone resorption.

    METHODS: This cross-sectional study recruited 203 postmenopausal women (age ranged from 51 to 85 years old) in community settings. The dietary intakes of the participants were assessed using a validated interviewer-administered semi-quantitative food frequency questionnaire (FFQ), while dietary acid load (DAL) was estimated using net endogenous acid production (NEAP). Agena® MassARRAY genotyping analysis and serum collagen type 1 cross-linked C-telopeptide (CTX1) were used to identify the IL6 genotype and as a bone resorption marker, respectively. The interactions between diet and single-nucleotide polymorphisms (SNPs) were assessed using linear regressions.

    RESULTS: A total of 203 healthy postmenopausal women aged between 51 and 85 years participated in this study. The mean BMI of the participants was 24.3 kg/m2. In IL6 -174 G/C, all the participants carried the GG genotype, while the C allele was absent. Approximately 40% of the participants had a high dietary acid load. Dietary acid load (B = 0.15, p = 0.031) and the IL6 -572 CC genotype group (B = 0.14, p = 0.044) were positively associated with a higher bone resorption. However, there was no moderating effect of the IL6 genetic polymorphism on the relationship between and acid ash diet and bone resorption markers among the postmenopausal women (p = 0.79).

    CONCLUSION: High consumption of an acid ash diet and the IL6 -572 C allele seem to attribute to high bone resorption among postmenopausal women. However, our finding does not support the interaction effect of dietary acidity and IL6 (-174G/C and -572G/C) polymorphisms on the rate of bone resorption. Taken together, these results have given scientific research other candidate genes to focus on which may interact with DAL on bone resorption, to enhance planning for preventing or delaying the onset of osteoporosis among postmenopausal women.

  3. Arumugam M, Goh CK, Zainal Z, Triwahyono S, Lee AF, Wilson K, et al.
    Nanomaterials (Basel), 2021 Mar 16;11(3).
    PMID: 33809677 DOI: 10.3390/nano11030747
    Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites. The resulting h-HZSM-5 comprises a disordered array of fused 10-20 nm crystallites and mesopores with a mean diameter of 13 nm, which maintain the high surface area and acidity of a conventional HZSM-5. Mesopores increase the yield of diesel range hydrocarbons obtained from oleic acid deoxygenation from ~20% to 65%, attributed to improved acid site accessibility within the hierarchical network.
  4. Lai SY, Ng KH, Cheng CK, Nur H, Nurhadi M, Arumugam M
    Chemosphere, 2021 Jan;263:128244.
    PMID: 33297191 DOI: 10.1016/j.chemosphere.2020.128244
    Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth. Unfortunately, it suffers from a large bandgap energy, low specific surface area, low recoverability, and scarce utilization in narrow absorption range. Therefore, the pollutant degradation performance is not satisfactory. Consequently, multifarious research to enhance the photocatalytic performance of Keggin-based POMs were reported, viz. via novel modifications and functionalizations through a variety of materials, inclusive of, inter alia, metal oxides, transition metals, noble metals, and others. In order to advocate this emerging technology, current review work provides a systematic overview on recent advancement, initiated from the strategized synthetic methods, followed by hierarchical enhancement and intensification process, at the same time emphasizes on the fundamental working principles of Keggin-based POM nanocomposites. By reviewing and summarizing the efforts adopted global-wide, this review is ended with providing useful outlooks for future studies. It is also anticipated to shed light on producing Keggin-based POM nanocomposites with breakthrough visible- and solar-light-driven photocatalytic performance against recalcitrant organic waste.
  5. Foo CN, Arumugam M, Lekhraj R, Lye MS, Mohd-Sidik S, Jamil Osman Z
    PMID: 32858791 DOI: 10.3390/ijerph17176179
    BACKGROUND: Psychosocial interventions for patients with osteoarthritis (OA) of the knee to reduce pain and improve physical and psychological functioning are still lacking in Malaysia.

    METHODS: A parallel-group unblinded randomized controlled trial involving 300 patients was conducted in two hospital orthopedics clinics in Malaysia. Patients were randomly assigned to receive cognitive behavioral-based group therapy (n = 150) or no further intervention (n = 150). The primary outcome was the change from baseline in knee pain as determined by the Knee injury and Osteoarthritis Outcome Score (KOOS) at 6 months. The data collected were analyzed by covariate-adjusted mixed design repeated measures analysis of variance. All analyses were performed under the terms of intention-to-treat.

    RESULTS: At 6 months, mean change from baseline in the KOOS knee pain score was 0.6 points (95% CI -1.73 to 2.94) in the control group and 8.9 points (95% CI 6.62 to 11.23) (denoting less knee pain intensity) in the intervention group (significant treatment effect p < 0.0001). Patients treated with such an approach also experienced significant improvement in functional ability when performing activities of daily living and had improved ability to cope with depression, anxiety and pain catastrophizing.

    CONCLUSION: The intervention module delivered by healthcare professionals had a sustained effect on knee OA pain and functionality over 6 months, thereby leading to an overall improvement in psychological well-being, thus benefitting most of the Malaysian knee OA patients.

  6. Lim SY, Chan YM, Ramachandran V, Shariff ZM, Chin YS, Arumugam M
    Nutrients, 2021 Jun 23;13(7).
    PMID: 34201855 DOI: 10.3390/nu13072161
    The objective of this study was to explore the effects of dietary acid load (DAL) and IGF1 and IL6 gene polymorphisms and their potential diet-gene interactions on metabolic traits. A total of 211 community-dwelling postmenopausal women were recruited. DAL was estimated using potential renal acid load (PRAL). Blood was drawn for biochemical parameters and DNA was extracted and Agena® MassARRAY was used for genotyping analysis to identify the signalling of IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) polymorphisms. Interactions between diet and genetic polymorphisms were assessed using regression analysis. The result showed that DAL was positively associated with fasting blood glucose (FBG) (β = 0.147, p < 0.05) and there was significant interaction effect between DAL and IL6 with systolic blood pressure (SBP) (β = 0.19, p = 0.041). In conclusion, these findings did not support the interaction effects between DAL and IGF1 and IL6 single nucleotide polymorphisms (rs35767, rs7136446, and rs1800796) on metabolic traits, except for SBP. Besides, higher DAL was associated with higher FBG, allowing us to postulate that high DAL is a potential risk factor for diabetes.
  7. Santos JS, Fereidooni M, Marquez V, Arumugam M, Tahir M, Praserthdam S, et al.
    Chemosphere, 2022 Feb;289:133170.
    PMID: 34875298 DOI: 10.1016/j.chemosphere.2021.133170
    This study investigates the facile fabrication of interfacial defects assisted amorphous TiO2 nanotubes arrays (am-TNTA) for promoting gas-phase CO2 photoreduction to methane. The am-TNTA catalyst was fabricated via a one-step synthesis, without heat treatment, by anodization of Titanium in Ethylene glycol-based electrolyte in a shorter anodizing time. The samples presented a TiO2 nanostructured array with a nanotubular diameter of 100 ± 10 nm, a wall thickness of 26 ± 5 nm, and length of 3.7 ± 0.3 μm, resulting in a specific surface of 0.75 m2 g. The am-TNTA presented prolonged chemical stability, a high exposed surface area, and a large number of surface traps that can reduce the recombination of the charge carriers. The am-TNTA showed promising photoactivity when tested in the CO2 reduction reaction with water under UV irradiation with a methane production rate of 14.0 μmol gcat-1 h-1 for a pure TiO2 material without any modification procedure. This enhanced photocatalytic activity can be explained in terms of surface defects of the amorphous structure, mainly OH groups that can act as electron traps for increasing the electron lifetime. The CO2 interacts directly with those traps, forming carbonate species, which favors the catalytic conversion to methane. The am-TNTA also exhibited a high stability during six reaction cycles. The photocatalytic activity, the significantly reduced time for synthesis, and high stability for continuous CH4 production make this nanomaterial a potential candidate for a sustainable CO2 reduction process and can be employed for other energy applications.
  8. Booupathy LK, Venkatachalam S, Natarajan N, Thamaraiselvan R, Arumugam M, Maruthaiveeran Periyasamy B
    J Food Drug Anal, 2016 Jan;24(1):206-213.
    PMID: 28911405 DOI: 10.1016/j.jfda.2015.07.003
    Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF). Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.
  9. Leiu KH, Chin YS, Mohd Shariff Z, Arumugam M, Chan YM
    PLoS One, 2020;15(2):e0228803.
    PMID: 32053636 DOI: 10.1371/journal.pone.0228803
    BACKGROUND: Serum vitamin D insufficiency is a public health issue, especially among older women. Sun exposure is fundamental in the production of vitamin D, but older women have less optimal sun exposure. Therefore, factors such as body composition and diet become more essential in sustaining sufficient serum levels of vitamin D. The objective of the current study is to determine factors contributing towards serum vitamin D insufficiency among 214 older women.

    METHODS: The respondents had their body weight, height, waist circumference and body fat percentage measured, as well as interviewed for their socio-demographic characteristics, sun exposure and dietary intake. Fasting blood samples were obtained from the respondents to measure their serum 25-hydroxyvitamin D [25(OH)D] concentration.

    RESULTS: There were 82.7% (95% CI: 77.6%, 87.8%) of the respondents that had serum vitamin D insufficiency (< 50 nmol/L) with an average of 37.4 ± 14.3nmol/L. In stepwise multiple linear regression, high percentage of body fat (ß = -0.211, p <0.01) and low consumption of milk and dairy products (ß = 0.135, p <0.05) were the main contributors towards insufficient serum vitamin D levels, but not socio-demographic characteristics, other anthropometric indices, sun exposure and diet quality.

    CONCLUSION: Older women with high body fat percentage and low dairy product consumption were more likely to have serum vitamin D insufficiency. Older women should ensure their body fat percentage is within a healthy range and consume more milk and dairy products in preventing serum vitamin D insufficiency.

  10. Arumugam M, Manikandan DB, Marimuthu SK, Muthusamy G, Kari ZA, Téllez-Isaías G, et al.
    Antibiotics (Basel), 2023 May 11;12(5).
    PMID: 37237796 DOI: 10.3390/antibiotics12050891
    Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.
  11. Mohamed Haris NH, Krishnasamy S, Chin KY, Mariappan V, Arumugam M
    Nutrients, 2023 Jun 10;15(12).
    PMID: 37375611 DOI: 10.3390/nu15122707
    Background: Patients with plaque psoriasis have an increased risk of metabolic syndrome. However, no studies have assessed the nutritional status or screening methods of this population. Aims: This review aimed to identify and summarise metabolic syndrome screening criteria and the tools/methods used in nutrition assessment in patients with plaque psoriasis. Data synthesis: PubMed, Web of Science, Ovid and Scopus were searched from inception to March 2023, following the Arkensey and O'Malley framework, to identify articles that report nutritional assessment methods/tools and metabolic screening criteria. Twenty-one studies were identified. Overall, these studies used four different screening criteria to define metabolic syndrome. Patients with psoriasis had a high prevalence of metabolic syndrome and had a poor nutritional status compared to controls. However, only anthropometric measures such as weight, height and waist circumference were employed to determine the nutritional status. Only two studies assessed the vitamin D status. Conclusions: Patients with psoriasis have a poor nutritional status, and they are at risk of nutrient deficiencies. However, these health aspects are not routinely assessed and may increase the risk of malnutrition among these patients. Therefore, additional assessments, such as body composition and dietary assessment, are needed to determine the nutritional status to provide a suitable intervention.
  12. Lim SY, Chan YM, Chin YS, Zalilah MS, Ramachandran V, Arumugam M
    Malays J Med Sci, 2024 Apr;31(2):113-129.
    PMID: 38694576 DOI: 10.21315/mjms2024.31.2.10
    BACKGROUND: This study aimed to investigate factors associated with bone resorption status and determine the independent and interactive effects of dietary acid load (DAL) and cardiometabolic syndrome (CMS) on bone resorption in post-menopausal women.

    METHODS: Overall, 211 community-dwelling post-menopausal women were recruited from the National Council of Senior Citizens Organization, Malaysia. DAL was estimated using the potential renal acid load from the food frequency questionnaire. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and smoking behaviour was assessed using the Global Adult Tobacco Survey 2011. Serum 25(OH) vitamin D levels were determined using the ADVIA Centaur vitamin D assay and serum C-terminal telopeptides of type I collagen (CTX1) were used as surrogate markers to assess bone resorption. CMS was determined based on the harmonised criteria.

    RESULTS: Age (β = -0.145, t = -2.002, P < 0.05) was negatively associated while DAL (β = 0.142, t = 2.096, P < 0.05) and sleep quality (β = 0.147, t = 2.162, P < 0.05) were positively associated with CTX1. Height was positively correlated with CTX1 (r = 0.136, P <0.05). Conversely, other variables (CMS traits, CMS, serum 25(OH) vitamin D level, years of menopause, years of education and physical activity) were not significantly associated with CTX1 levels. There was no significant interaction between DAL and CMS on bone resorption.

    CONCLUSION: Our findings propose that high DAL, but not CMS, is a potential risk factor for bone resorption. The analysis did not demonstrate the combined effects of DAL and CMS on bone resorption.

  13. Vimali E, Senthil Kumar A, Sakthi Vignesh N, Ashokkumar B, Dhakshinamoorthy A, Udayan A, et al.
    Chemosphere, 2022 Jan 07.
    PMID: 35007613 DOI: 10.1016/j.chemosphere.2021.133477
    Microalgae are the most attractive renewable energy sources for the production of biofuels because of their luxurious growth and lipid accumulation ability in diverse nutritional conditions. In the present study, Desmodesmus sp. VV2, an indigenous microalga, was evaluated for its biodiesel potential using Response Surface Methodology (RSM) to improve the lipid accumulation with the combination of nutrients stress NaNO3 starvation, CaCl2 depletion, and supplementation of magnesium oxide nanoparticles (MgO). Among different stress conditions, 57.6% lipid content was achieved from RSM optimized media. Owing to this, RSM results were also validated by the Artificial Neural Network (ANN) with 11 training algorithms and it is found that RSM was more significant. Further, the saturated fatty acid (SFA) content was noticeably increased in RSM optimized media (95.8%) while compared with control and previous reports of other Desmodesmus sp. Further, the highest total FAME content 97.21% was also achieved in cells grown in RSM optimized media. Biodiesel quality parameters were further analyzed and found that they are in accordance with international standards. This study is suggesting that the fatty acid profile of Desmodesmus sp. VV2 attained under optimized media conditions would be suitable for biodiesel production for future energy demand.
  14. Mohd Rohani MF, Zanial AZ, Suppiah S, Phay Phay K, Mohamed Aslum Khan F, Mohamad Najib FH, et al.
    Nucl Med Commun, 2021 Jan;42(1):9-20.
    PMID: 33165258 DOI: 10.1097/MNM.0000000000001306
    Skeletal whole-body scintigraphy (WBS), although widely used as a sensitive tool for detecting metastatic bone disease in oncology cases, has relatively low specificity. Indeterminate bone lesions (IBLs) detected by WBS cause a diagnostic dilemma, which hampers further management plans. In the advent of hybrid imaging, single-photon emission computed tomography/computed tomography (SPECT/CT) has been gaining popularity as a tool to improve the characterisation of IBLs detected by WBS. As yet, there has not been a systematic review to objectively evaluate the diagnostic capabilities of SPECT/CT in this area. We conducted a systematic review of relevant electronic databases up to 30 August 2020. The outcomes of interest were the reporting of SPECT/CT to identify benign and malignant IBLs and the calculation of the sensitivity and specificity of the index test, based on histopathological examination or clinical and imaging follow-up as the reference standard. After the risk of bias and eligibility assessment, 12 articles were identified and synthesised in the meta-analysis. The pooled sensitivity and specificity of SPECT/CT for diagnosing IBLs are 93.0% [95% confidence interval (CI) 0.91-0.95] and 96.0% (95% CI 0.94-0.97), respectively. There was heterogeneity of the articles due to variable imaging protocols, duration of follow-up and scoring methods for interpreting the SPECT/CT results. The heterogeneity poses a challenge for accurate interpretation of the true diagnostic capability of SPECT/CT. In conclusion, targeted SPECT/CT improves the specificity of diagnosing bone metastases, but efforts need to be made to standardise the thresholds for SPECT/CT, methodology, as well as harmonising the reporting and interpretation criteria. We also make some recommendations for future works.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links