Displaying publications 21 - 40 of 370 in total

Abstract:
Sort:
  1. Tan LT, Chan KG, Chan CK, Khan TM, Lee LH, Goh BH
    Biomed Res Int, 2018;2018:4823126.
    PMID: 29805975 DOI: 10.1155/2018/4823126
    Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.
  2. Song SL, Yong HS, Chua KO, Eamsobhana P, Lim PE, Chan KG
    Biodivers Data J, 2022;10:e87459.
    PMID: 36761655 DOI: 10.3897/BDJ.10.e87459
    The chrysomelid beetlesPodontiaaffinis and Silanafarinosa are members of the subfamilies Galerucinae and Cassidinae, respectively. This study, based on 16S rRNA gene-targeted metagenomics sequencing, reports the core members and differential abundance of bacterial communities in the larvae and adult beetles of P.affinis and the adult S.farinosa. Cyanobacteria/Melainabacteria group was the predominant phylum in the larvae of P.affinis, while Proteobacteria was the predominant phylum in adult P.affinis and S.farinosa. The number of Order, Family, Genus and Species OTUs in the adult stage of P.affinis was higher than that in the larval stage. The bacterial species richness of adult P.affinis was significantly higher than that of adult S.farinosa. Betaproteobacteria was the predominant class in adult P.affinis, Cyanobacteria in the larvae of P.affinis and Gammaproteobacteria in S.farinosa. The larvae and adult beetles of P.affinis and adult S.farinosahad a low number of unique and shared bacterial OTUs (> 5% relative abundance). The differences in the microbiota indicate possible differences in nutrient assimilation, host taxonomy and other stochastic processes. These findings provide new information to our understanding of the bacteria associated with specialist phytophagous chrysomelid beetles and beetles in general.
  3. Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JKK, Tay KC, et al.
    Biology (Basel), 2021 Apr 01;10(4).
    PMID: 33916114 DOI: 10.3390/biology10040287
    Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.
  4. Yu CY, Ang GY, Chan KG, Banga Singh KK, Chan YY
    Biosens Bioelectron, 2015 Aug 15;70:282-8.
    PMID: 25835520 DOI: 10.1016/j.bios.2015.03.048
    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.
  5. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
  6. Chan CS, Sin LL, Chan KG, Shamsir MS, Manan FA, Sani RK, et al.
    Biotechnol Biofuels, 2016;9(1):174.
    PMID: 27555880 DOI: 10.1186/s13068-016-0587-x
    In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails, such as Spezyme(®) CP (Genencor), Acellerase™ 1000 (Genencor), and Celluclast(®) 1.5L (Novozymes), are ineffectively to release free glucose from the pretreated biomass without additional β-glucosidase.
  7. Ser HL, Tan WS, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, et al.
    Braz J Microbiol, 2017 09 06;49(1):13-15.
    PMID: 28927873 DOI: 10.1016/j.bjm.2017.01.013
    As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825bp with G+C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.
  8. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Braz J Microbiol, 2017 07 19;49(1):10-12.
    PMID: 28778371 DOI: 10.1016/j.bjm.2017.03.013
    Vitellibacter aquimaris D-24T (=KCTC 42708T=DSM 101732T), a halophilic marine bacterium, was isolated from seawater collected from Desaru beach, Malaysia. Here, we present the draft genome sequence of D-24T with a genome size of approximately 3.1Mbp and G+C content of 39.93%. The genome of D-24T contains genes involved in reducing a potent greenhouse gas (N2O) in the environment and the degradation of proteinaceous compounds. Genome availability will provide insights into potential biotechnological and environmental applications of this bacterium.
  9. Ser HL, Tan WS, Mutalib NA, Yin WF, Chan KG, Goh BH, et al.
    Braz J Microbiol, 2018 02 02;49(2):207-209.
    PMID: 29428207 DOI: 10.1016/j.bjm.2017.04.012
    Streptomycetes remain as one of the important sources for bioactive products. Isolated from the mangrove forest, Streptomyces gilvigriseus MUSC 26T was previously characterised as a novel streptomycete. The high quality draft genome of MUSC 26T contained 5,213,277bp with G+C content of 73.0%. Through genome mining, several gene clusters associated with secondary metabolites production were revealed in the genome of MUSC 26T. These findings call for further investigations into the potential exploitation of the strain for production of pharmaceutically important compounds.
  10. Goh JXH, Tan LT, Goh JK, Chan KG, Pusparajah P, Lee LH, et al.
    Cancers (Basel), 2019 Jun 21;11(6).
    PMID: 31234411 DOI: 10.3390/cancers11060867
    The search for effective methods of cancer treatment and prevention has been a continuous effort since the disease was discovered. Recently, there has been increasing interest in exploring plants and fruits for molecules that may have potential as either adjuvants or as chemopreventive agents against cancer. One of the promising compounds under extensive research is nobiletin (NOB), a polymethoxyflavone (PMF) extracted exclusively from citrus peel. Not only does nobiletin itself exhibit anti-cancer properties, but its derivatives are also promising chemopreventive agents; examples of derivatives with anti-cancer activity include 3'-demethylnobiletin (3'-DMN), 4'-demethylnobiletin (4'-DMN), 3',4'-didemethylnobiletin (3',4'-DMN) and 5-demethylnobiletin (5-DMN). In vitro studies have demonstrated differential efficacies and mechanisms of NOB and its derivatives in inhibiting and killing of colon cancer cells. The chemopreventive potential of NOB has also been well demonstrated in several in vivo colon carcinogenesis animal models. NOB and its derivatives target multiple pathways in cancer progression and inhibit several of the hallmark features of colorectal cancer (CRC) pathophysiology, including arresting the cell cycle, inhibiting cell proliferation, inducing apoptosis, preventing tumour formation, reducing inflammatory effects and limiting angiogenesis. However, these substances have low oral bioavailability that limits their clinical utility, hence there have been numerous efforts exploring better drug delivery strategies for NOB and these are part of this review. We also reviewed data related to patents involving NOB to illustrate the extensiveness of each research area and its direction of commercialisation. Furthermore, this review also provides suggested directions for future research to advance NOB as the next promising candidate in CRC chemoprevention.
  11. Tan LT, Chan CK, Chan KG, Pusparajah P, Khan TM, Ser HL, et al.
    Cancers (Basel), 2019 Nov 06;11(11).
    PMID: 31698795 DOI: 10.3390/cancers11111742
    New and effective anticancer compounds are much needed as the incidence of cancer continues to rise. Microorganisms from a variety of environments are promising sources of new drugs; Streptomyces sp. MUM256, which was isolated from mangrove soil in Malaysia as part of our ongoing efforts to study mangrove resources, was shown to produce bioactive metabolites with chemopreventive potential. This present study is a continuation of our previous efforts and aimed to investigate the underlying mechanisms of the ethyl acetate fraction of MUM256 crude extract (MUM256 EA) in inhibiting the proliferation of HCT116 cells. Our data showed that MUM256 EA reduced proliferation of HCT116 cells via induction of cell-cycle arrest. Molecular studies revealed that MUM256 EA regulated the expression level of several important cell-cycle regulatory proteins. The results also demonstrated that MUM256 EA induced apoptosis in HCT116 cells mediated through the intrinsic pathway. Gas chromatography-mass spectrometry (GC-MS) analysis detected several chemical compounds present in MUM256 EA, including cyclic dipeptides which previous literature has reported to demonstrate various pharmacological properties. The cyclic dipeptides were further shown to inhibit HCT116 cells while exerting little to no toxicity on normal colon cells in this study. Taken together, the findings of this project highlight the important role of exploring the mangrove microorganisms as a bioresource which hold tremendous promise for the development of chemopreventive drugs against colorectal cancer.
  12. Ng KT, Oong XY, Lim SH, Chook JB, Takebe Y, Chan YF, et al.
    Clin Infect Dis, 2018 07 02;67(2):261-268.
    PMID: 29385423 DOI: 10.1093/cid/ciy063
    Background: Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear.

    Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014.

    Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate.

    Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.

  13. Chan KG, Puthucheary SD, Chan XY, Yin WF, Wong CS, Too WS, et al.
    Curr Microbiol, 2011 Jan;62(1):167-72.
    PMID: 20544198 DOI: 10.1007/s00284-010-9689-z
    Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C(6). Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.
  14. Bukhsh A, Khan TM, Sarfraz Nawaz M, Sajjad Ahmed H, Chan KG, Goh BH
    Diabetes Metab Syndr Obes, 2019;12:1409-1417.
    PMID: 31616171 DOI: 10.2147/DMSO.S209711
    Objective: This study explored the relationship of disease knowledge with glycemic control and self-care practices in adult Pakistani people diabetes (PWD).

    Methods: People diagnosed with type 2 diabetes (n=218) were selected from three health care centers, located in different cities of Pakistan. Disease knowledge and self-care practices were assessed by Urdu versions of Diabetes Knowledge Questionnaire (DKQ) and Diabetes Self-Management Questionnaire (DSMQ), using a cross-sectional design. Chi-square and correlation analysis were applied to explore the relationship of disease knowledge with glycemic control and self-care practices. Linear regression was used to explore the predictors for disease knowledge.

    Results: Majority of the sample was >45-60 years old (48.8%), suffering from type 2 diabetes mellitus for <5 years (49.5%) and had poor glycemic control (HbA1C≥7%; n=181 participants). Disease knowledge was significantly associated (p<0.05) with patient's gender, level of education, family history of diabetes, nature of euglycemic therapy, and glycemic control. Correlation matrix showed strongly inverse correlations of DKQ with glycated hemoglobin levels (r=-0.62; p<0.001) and strongly positive with DSMQ sum scale (r=0.63; p<0.001). PWD having university-level education (β=0.22; 95% Confidence Interval (CI) 0.189, 0.872; p<0.01), doing job (β=0.22; 95% CI 0.009, 0.908]; p=0.046), and use of oral hypoglycemic agents in combination with insulin (β=-0.16; 95% CI [-1.224, -0.071]; p=0.028) were the significant predictors for disease knowledge.

    Conclusion: Disease knowledge significantly correlated with glycated hemoglobin levels and self-care activities of PWD. These findings will help in designing patient-tailored diabetes educational interventions for yielding a higher probability of achieving target glycemic control.

  15. Yu CY, Chan KG, Yean CY, Ang GY
    Diagnostics (Basel), 2021 Jan 01;11(1).
    PMID: 33401392 DOI: 10.3390/diagnostics11010053
    The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began as a cluster of pneumonia cases in Wuhan, China before spreading to over 200 countries and territories on six continents in less than six months. Despite rigorous global containment and quarantine efforts to limit the transmission of the virus, COVID-19 cases and deaths have continued to increase, leaving devastating impacts on the lives of many with far-reaching effects on the global society, economy and healthcare system. With over 43 million cases and 1.1 million deaths recorded worldwide, accurate and rapid diagnosis continues to be a cornerstone of pandemic control. In this review, we aim to present an objective overview of the latest nucleic acid-based diagnostic tests for the detection of SARS-CoV-2 that have been authorized by the Food and Drug Administration (FDA) under emergency use authorization (EUA) as of 31 October 2020. We systematically summarize and compare the principles, technologies, protocols and performance characteristics of amplification- and sequencing-based tests that have become alternatives to the CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel. We highlight the notable features of the tests including authorized settings, along with the advantages and disadvantages of the tests. We conclude with a brief discussion on the current challenges and future perspectives of COVID-19 diagnostics.
  16. Ang GY, Chan KG, Yean CY, Yu CY
    Diagnostics (Basel), 2022 Nov 18;12(11).
    PMID: 36428918 DOI: 10.3390/diagnostics12112854
    The continued circulation of SARS-CoV-2 virus in different parts of the world opens up the possibility for more virulent variants to evolve even as the coronavirus disease 2019 transitions from pandemic to endemic. Highly transmissible and virulent variants may seed new disruptive epidemic waves that can easily put the healthcare system under tremendous pressure. Despite various nucleic acid-based diagnostic tests that are now commercially available, the wide applications of these tests are largely hampered by specialized equipment requirements that may not be readily available, accessible and affordable in less developed countries or in low resource settings. Hence, the availability of lateral flow immunoassays (LFIs), which can serve as a diagnostic tool by detecting SARS-CoV-2 antigen or as a serological tool by measuring host immune response, is highly appealing. LFI is rapid, low cost, equipment-free, scalable for mass production and ideal for point-of-care settings. In this review, we first summarize the principle and assay format of these LFIs with emphasis on those that were granted emergency use authorization by the US Food and Drug Administration followed by discussion on the specimen type, marker selection and assay performance. We conclude with an overview of challenges and future perspective of LFI applications.
  17. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
  18. Soh EY, Chhabra SR, Halliday N, Heeb S, Müller C, Birmes FS, et al.
    Environ Microbiol, 2015 Nov;17(11):4352-65.
    PMID: 25809238 DOI: 10.1111/1462-2920.12857
    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.
  19. Liew KJ, Shahar S, Shamsir MS, Shaharuddin NB, Liang CH, Chan KG, et al.
    Environ Microbiome, 2024 May 06;19(1):29.
    PMID: 38706006 DOI: 10.1186/s40793-024-00572-7
    BACKGROUND: Hot spring biofilms provide a window into the survival strategies of microbial communities in extreme environments and offer potential for biotechnological applications. This study focused on green and brown biofilms thriving on submerged plant litter within the Sungai Klah hot spring in Malaysia, characterised by temperatures of 58-74 °C. Using Illumina shotgun metagenomics and Nanopore ligation sequencing, we investigated the microbial diversity and functional potential of metagenome-assembled genomes (MAGs) with specific focus on biofilm formation, heat stress response, and carbohydrate catabolism.

    RESULTS: Leveraging the power of both Illumina short-reads and Nanopore long-reads, we employed an Illumina-Nanopore hybrid assembly approach to construct MAGs with enhanced quality. The dereplication process, facilitated by the dRep tool, validated the efficiency of the hybrid assembly, yielding MAGs that reflected the intricate microbial diversity of these extreme ecosystems. The comprehensive analysis of these MAGs uncovered intriguing insights into the survival strategies of thermophilic taxa in the hot spring biofilms. Moreover, we examined the plant litter degradation potential within the biofilms, shedding light on the participation of diverse microbial taxa in the breakdown of starch, cellulose, and hemicellulose. We highlight that Chloroflexota and Armatimonadota MAGs exhibited a wide array of glycosyl hydrolases targeting various carbohydrate substrates, underscoring their metabolic versatility in utilisation of carbohydrates at elevated temperatures.

    CONCLUSIONS: This study advances understanding of microbial ecology on plant litter under elevated temperature by revealing the functional adaptation of MAGs from hot spring biofilms. In addition, our findings highlight potential for biotechnology application through identification of thermophilic lignocellulose-degrading enzymes. By demonstrating the efficiency of hybrid assembly utilising Illumina-Nanopore reads, we highlight the value of combining multiple sequencing methods for a more thorough exploration of complex microbial communities.

  20. Tan LT, Lee LH, Yin WF, Chan CK, Abdul Kadir H, Chan KG, et al.
    PMID: 26294929 DOI: 10.1155/2015/896314
    Ylang-ylang (Cananga odorata Hook. F. & Thomson) is one of the plants that are exploited at a large scale for its essential oil which is an important raw material for the fragrance industry. The essential oils extracted via steam distillation from the plant have been used mainly in cosmetic industry but also in food industry. Traditionally, C. odorata is used to treat malaria, stomach ailments, asthma, gout, and rheumatism. The essential oils or ylang-ylang oil is used in aromatherapy and is believed to be effective in treating depression, high blood pressure, and anxiety. Many phytochemical studies have identified the constituents present in the essential oils of C. odorata. A wide range of chemical compounds including monoterpene, sesquiterpenes, and phenylpropanoids have been isolated from this plant. Recent studies have shown a wide variety of bioactivities exhibited by the essential oils and the extracts of C. odorata including antimicrobial, antibiofilm, anti-inflammatory, antivector, insect-repellent, antidiabetic, antifertility and antimelanogenesis activities. Thus, the present review summarizes the information concerning the traditional uses, phytochemistry, and biological activities of C. odorata. This review is aimed at demonstrating that C. odorata not only is an important raw material for perfume industry but also considered as a prospective useful plant to agriculture and medicine.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links