Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Ramli Hamid MT, Loi KS, Chan WY, Ab Mumin N, Abdul Hamid S, Izza Rozalli F, et al.
    Curr Med Imaging, 2023 Aug 29.
    PMID: 37649292 DOI: 10.2174/1573405620666230829150218
    BACKGROUND: The use of breast MRI for screening has increased over the past decade, mostly in women with a high risk of breast cancer. Abbreviated breast MRI (AB-MR) is introduced to make MRI a more accessible screening modality. AB-MR decreases scanning and reporting time and the overall cost of MRI.

    OBJECTIVE: This study aims to evaluate the diagnostic efficacy of abbreviated MRI protocol in detecting breast cancer in screening and diagnostic populations, using histopathology as the reference standard.

    MATERIALS AND METHODS: This is a single-centre retrospective cross-sectional study of 134 patients with 198 histologically proven breast lesions who underwent full diagnostic protocol contrast-enhanced breast MRI (FDP-MR) at the University Malaya Medical Centre (UMMC) from 1st January 2018 to 31st December 2019. AB-MR was pre-determined and evaluated with regard to the potential to detect and exclude malignancy from 3 readers of varying radiological experiences. The sensitivity of both AB-MR and FDP-MR were compared using the McNemar test, where both protocols' diagnostic performances were assessed via the receiver operating characteristic (ROC) curve. Inter-observer agreement was analysed using Fleiss Kappa.

    RESULT: There were 134 patients with 198 lesions. The average age was 50.9 years old (range 27 - 80). A total of 121 (90%) MRIs were performed for diagnostic purposes. Screening accounted for 9.4% of the cases, 55.6% (n=110) lesions were benign, and 44.4% (n=88) were malignant. The commonest benign and malignant lesions were fibrocystic change (27.3%) and invasive ductal carcinoma (78.4%). The mean sensitivity, specificity, positive predictive value, and negative predictive value for AB-MR were 0.96, 0.57, 0.68 and 0.94, respectively. Both AB-MR and FDP-MR showed excellent diagnostic performance with AUC of 0.88 and 0.96, respectively. The general inter-observer agreement of all three readers for AB-MR was substantial (k=0.69), with fair agreement demonstrated between AB-MR and FDP-MR (k=0.36).

    CONCLUSION: The study shows no evidence that the diagnostic efficacy of AB-MR is inferior to FDP-MR. AB-MR, with high sensitivity, has proven its capability in cancer detection and exclusion, especially for biologically aggressive cancers.

  2. Kaplan E, Chan WY, Altinsoy HB, Baygin M, Barua PD, Chakraborty S, et al.
    J Digit Imaging, 2023 Dec;36(6):2441-2460.
    PMID: 37537514 DOI: 10.1007/s10278-023-00889-8
    Detecting neurological abnormalities such as brain tumors and Alzheimer's disease (AD) using magnetic resonance imaging (MRI) images is an important research topic in the literature. Numerous machine learning models have been used to detect brain abnormalities accurately. This study addresses the problem of detecting neurological abnormalities in MRI. The motivation behind this problem lies in the need for accurate and efficient methods to assist neurologists in the diagnosis of these disorders. In addition, many deep learning techniques have been applied to MRI to develop accurate brain abnormality detection models, but these networks have high time complexity. Hence, a novel hand-modeled feature-based learning network is presented to reduce the time complexity and obtain high classification performance. The model proposed in this work uses a new feature generation architecture named pyramid and fixed-size patch (PFP). The main aim of the proposed PFP structure is to attain high classification performance using essential feature extractors with both multilevel and local features. Furthermore, the PFP feature extractor generates low- and high-level features using a handcrafted extractor. To obtain the high discriminative feature extraction ability of the PFP, we have used histogram-oriented gradients (HOG); hence, it is named PFP-HOG. Furthermore, the iterative Chi2 (IChi2) is utilized to choose the clinically significant features. Finally, the k-nearest neighbors (kNN) with tenfold cross-validation is used for automated classification. Four MRI neurological databases (AD dataset, brain tumor dataset 1, brain tumor dataset 2, and merged dataset) have been utilized to develop our model. PFP-HOG and IChi2-based models attained 100%, 94.98%, 98.19%, and 97.80% using the AD dataset, brain tumor dataset1, brain tumor dataset 2, and merged brain MRI dataset, respectively. These findings not only provide an accurate and robust classification of various neurological disorders using MRI but also hold the potential to assist neurologists in validating manual MRI brain abnormality screening.
  3. Barua PD, Chan WY, Dogan S, Baygin M, Tuncer T, Ciaccio EJ, et al.
    Entropy (Basel), 2021 Dec 08;23(12).
    PMID: 34945957 DOI: 10.3390/e23121651
    Optical coherence tomography (OCT) images coupled with many learning techniques have been developed to diagnose retinal disorders. This work aims to develop a novel framework for extracting deep features from 18 pre-trained convolutional neural networks (CNN) and to attain high performance using OCT images. In this work, we have developed a new framework for automated detection of retinal disorders using transfer learning. This model consists of three phases: deep fused and multilevel feature extraction, using 18 pre-trained networks and tent maximal pooling, feature selection with ReliefF, and classification using the optimized classifier. The novelty of this proposed framework is the feature generation using widely used CNNs and to select the most suitable features for classification. The extracted features using our proposed intelligent feature extractor are fed to iterative ReliefF (IRF) to automatically select the best feature vector. The quadratic support vector machine (QSVM) is utilized as a classifier in this work. We have developed our model using two public OCT image datasets, and they are named database 1 (DB1) and database 2 (DB2). The proposed framework can attain 97.40% and 100% classification accuracies using the two OCT datasets, DB1 and DB2, respectively. These results illustrate the success of our model.
  4. Ninomiya K, Arimura H, Chan WY, Tanaka K, Mizuno S, Muhammad Gowdh NF, et al.
    PLoS One, 2021;16(1):e0244354.
    PMID: 33428651 DOI: 10.1371/journal.pone.0244354
    OBJECTIVES: To propose a novel robust radiogenomics approach to the identification of epidermal growth factor receptor (EGFR) mutations among patients with non-small cell lung cancer (NSCLC) using Betti numbers (BNs).

    MATERIALS AND METHODS: Contrast enhanced computed tomography (CT) images of 194 multi-racial NSCLC patients (79 EGFR mutants and 115 wildtypes) were collected from three different countries using 5 manufacturers' scanners with a variety of scanning parameters. Ninety-nine cases obtained from the University of Malaya Medical Centre (UMMC) in Malaysia were used for training and validation procedures. Forty-one cases collected from the Kyushu University Hospital (KUH) in Japan and fifty-four cases obtained from The Cancer Imaging Archive (TCIA) in America were used for a test procedure. Radiomic features were obtained from BN maps, which represent topologically invariant heterogeneous characteristics of lung cancer on CT images, by applying histogram- and texture-based feature computations. A BN-based signature was determined using support vector machine (SVM) models with the best combination of features that maximized a robustness index (RI) which defined a higher total area under receiver operating characteristics curves (AUCs) and lower difference of AUCs between the training and the validation. The SVM model was built using the signature and optimized in a five-fold cross validation. The BN-based model was compared to conventional original image (OI)- and wavelet-decomposition (WD)-based models with respect to the RI between the validation and the test.

    RESULTS: The BN-based model showed a higher RI of 1.51 compared with the models based on the OI (RI: 1.33) and the WD (RI: 1.29).

    CONCLUSION: The proposed model showed higher robustness than the conventional models in the identification of EGFR mutations among NSCLC patients. The results suggested the robustness of the BN-based approach against variations in image scanner/scanning parameters.

  5. Barua PD, Muhammad Gowdh NF, Rahmat K, Ramli N, Ng WL, Chan WY, et al.
    PMID: 34360343 DOI: 10.3390/ijerph18158052
    COVID-19 and pneumonia detection using medical images is a topic of immense interest in medical and healthcare research. Various advanced medical imaging and machine learning techniques have been presented to detect these respiratory disorders accurately. In this work, we have proposed a novel COVID-19 detection system using an exemplar and hybrid fused deep feature generator with X-ray images. The proposed Exemplar COVID-19FclNet9 comprises three basic steps: exemplar deep feature generation, iterative feature selection and classification. The novelty of this work is the feature extraction using three pre-trained convolutional neural networks (CNNs) in the presented feature extraction phase. The common aspects of these pre-trained CNNs are that they have three fully connected layers, and these networks are AlexNet, VGG16 and VGG19. The fully connected layer of these networks is used to generate deep features using an exemplar structure, and a nine-feature generation method is obtained. The loss values of these feature extractors are computed, and the best three extractors are selected. The features of the top three fully connected features are merged. An iterative selector is used to select the most informative features. The chosen features are classified using a support vector machine (SVM) classifier. The proposed COVID-19FclNet9 applied nine deep feature extraction methods by using three deep networks together. The most appropriate deep feature generation model selection and iterative feature selection have been employed to utilise their advantages together. By using these techniques, the image classification ability of the used three deep networks has been improved. The presented model is developed using four X-ray image corpora (DB1, DB2, DB3 and DB4) with two, three and four classes. The proposed Exemplar COVID-19FclNet9 achieved a classification accuracy of 97.60%, 89.96%, 98.84% and 99.64% using the SVM classifier with 10-fold cross-validation for four datasets, respectively. Our developed Exemplar COVID-19FclNet9 model has achieved high classification accuracy for all four databases and may be deployed for clinical application.
  6. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

  7. Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, et al.
    Sensors (Basel), 2021 Dec 20;21(24).
    PMID: 34960599 DOI: 10.3390/s21248507
    Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas.
  8. Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, et al.
    Sensors (Basel), 2021 Dec 01;21(23).
    PMID: 34884045 DOI: 10.3390/s21238045
    The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
  9. Lam DC, Liam CK, Andarini S, Park S, Tan DSW, Singh N, et al.
    J Thorac Oncol, 2023 Oct;18(10):1303-1322.
    PMID: 37390982 DOI: 10.1016/j.jtho.2023.06.014
    INTRODUCTION: The incidence and mortality of lung cancer are highest in Asia compared with Europe and USA, with the incidence and mortality rates being 34.4 and 28.1 per 100,000 respectively in East Asia. Diagnosing lung cancer at early stages makes the disease amenable to curative treatment and reduces mortality. In some areas in Asia, limited availability of robust diagnostic tools and treatment modalities, along with variations in specific health care investment and policies, make it necessary to have a more specific approach for screening, early detection, diagnosis, and treatment of patients with lung cancer in Asia compared with the West.

    METHOD: A group of 19 advisors across different specialties from 11 Asian countries, met on a virtual Steering Committee meeting, to discuss and recommend the most affordable and accessible lung cancer screening modalities and their implementation, for the Asian population.

    RESULTS: Significant risk factors identified for lung cancer in smokers in Asia include age 50 to 75 years and smoking history of more than or equal to 20 pack-years. Family history is the most common risk factor for nonsmokers. Low-dose computed tomography screening is recommended once a year for patients with screening-detected abnormality and persistent exposure to risk factors. However, for high-risk heavy smokers and nonsmokers with risk factors, reassessment scans are recommended at an initial interval of 6 to 12 months with subsequent lengthening of reassessment intervals, and it should be stopped in patients more than 80 years of age or are unable or unwilling to undergo curative treatment.

    CONCLUSIONS: Asian countries face several challenges in implementing low-dose computed tomography screening, such as economic limitations, lack of efforts for early detection, and lack of specific government programs. Various strategies are suggested to overcome these challenges in Asia.

  10. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  11. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links