Displaying publications 21 - 40 of 96 in total

Abstract:
Sort:
  1. Suhaimi FW, Hassan Z, Mansor SM, Müller CP
    Neurosci Lett, 2021 02 06;745:135632.
    PMID: 33444671 DOI: 10.1016/j.neulet.2021.135632
    Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.
  2. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
  3. Damodaran T, Cheah PS, Murugaiyah V, Hassan Z
    Neurochem Int, 2020 10;139:104785.
    PMID: 32650028 DOI: 10.1016/j.neuint.2020.104785
    BACKGROUND: Clitoria ternatea (CT) is an herbal plant that has been used as a memory booster in folk medicine. CT root extract has been proven to restore chronic cerebral hypoperfusion (CCH)-induced memory deficits in a rat model, but the underlying mechanisms and the toxicity profile following repeated exposure have yet to be explored.

    THE AIM OF THE STUDY: To investigate the effects of the chronic (28 days) oral administration of CT root extract on CCH-induced cognitive impairment, neuronal damage and cholinergic deficit, and its toxicity profile in the CCH rat model.

    MATERIALS AND METHODS: The permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery method was employed to develop a CCH model in male Sprague Dawley (SD) rats. Then, these rats were given oral administration of CT root extract at doses of 100, 200, and 300 mg/kg, respectively for 28 days and subjected to behavioural tests. At the end of the experiment, the brain was harvested for histological analysis and cholinesterase activities. Then, blood samples were collected and organs such as liver, kidney, lung, heart, and spleen were procured for toxicity assessment.

    RESULTS: Chronic treatment of CT root extract at doses of 200 and 300 mg/kg, restored memory impairments induced by CCH. CT root extract was also found to diminish CCH-induced neuronal damage in the CA1 region of the hippocampus. High dose (300 mg/kg) of the CT root extract was significantly inhibited the increased acetylcholinesterase (AChE) activity in the frontal cortex and hippocampus of the PBOCCA rats. In toxicity study, repeated doses of CT root extract were found to be safe in PBOCCA rats after 28 days of treatment.

    CONCLUSIONS: Our findings provided scientific evidence supporting the therapeutic potential of CT root extract in the treatment of vascular dementia (VaD)-related cholinergic abnormalities and subsequent cognitive decline.

  4. Hassan R, Sreenivasan S, Müller CP, Hassan Z
    Front Pharmacol, 2021;12:708019.
    PMID: 34322028 DOI: 10.3389/fphar.2021.708019
    Background: Kratom or Mitragyna speciosa Korth has been widely used to relieve the severity of opioid withdrawal in natural settings. However, several studies have reported that kratom may by itself cause dependence following chronic consumption. Yet, there is currently no formal treatment for kratom dependence. Mitragynine, is the major psychoactive alkaloid in kratom. Chronic mitragynine treatment can cause addiction-like symptoms in rodent models including withdrawal behaviour. In this study we assessed whether the prescription drugs, methadone, buprenorphine and clonidine, could mitigate mitragynine withdrawal effects. In order to assess treatment safety, we also evaluated hematological, biochemical and histopathological treatment effects. Methods: We induced mitragynine withdrawal behaviour in a chronic treatment paradigm in rats. Methadone (1.0 mg/kg), buprenorphine (0.8 mg/kg) and clonidine (0.1 mg/kg) were i.p. administered over four days during mitragynine withdrawal. These treatments were stopped and withdrawal sign assessment continued. Thereafter, toxicological profiles of the treatments were evaluated in the blood and in organs. Results: Chronic mitragynine treatment caused significant withdrawal behaviour lasting at least 5 days. Methadone, buprenorphine, as well as clonidine treatments significantly attenuated these withdrawal signs. No major effects on blood or organ toxicity were observed. Conclusion: These data suggest that the already available prescription medications methadone, buprenorphine, and clonidine are capable to alleviate mitragynine withdrawal signs rats. This may suggest them as treatment options also for problematic mitragynine/kratom use in humans.
  5. Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M
    Psychopharmacology (Berl), 2015 Jul;232(13):2227-38.
    PMID: 25616583 DOI: 10.1007/s00213-015-3866-5
    RATIONALE: Mitragynine (MG) is the primary active alkaloid extracted from the leaves of Mitragyna speciosa or kratom and exhibits pharmacological activities mediated by opioid receptors. The plant has been traditionally used for its opium and psychostimulant-like effects to increase work efficiency or as a substitute in the self-treatment of opiate addiction.

    OBJECTIVES: The present study was performed to investigate the discriminative stimulus effects of MG in rats. The pharmacological mechanism of MG action and its derivative, 7-hydroxymitragynine (7-HMG) with a specific focus on opioid receptor involvement was examined in rats trained to discriminate morphine from vehicle. In order to study the dual actions of MG, the effect of cocaine substitution to the MG discriminative stimulus was also performed in MG-trained rats.

    METHODS: Male Sprague Dawley rats were trained to discriminate MG from vehicle in a two-lever drug discrimination procedure under a tandem variable-interval (VI 60') fixed-ratio (FR 10) schedule of food reinforcement.

    RESULTS: Rats acquired the MG discrimination (15.0 mg/kg, i.p.) which was similar to the acquisition of morphine discrimination (5.0 mg/kg, i.p.) in another group of rats. MG substituted fully to the morphine discriminative stimulus in a dose-dependent manner, suggesting pharmacological similarities between the two drugs. The administration of 7-HMG derivative in 3.0 mg/kg (i.p.) dose engendered full generalisation to the morphine discriminative stimulus. In addition, the MG stimulus also partially generalised to cocaine (10.0 mg/kg, i.p.) stimulus.

    CONCLUSION: The present study demonstrates that the discriminative stimulus effect of MG possesses both opioid- and psychostimulant-like subjective effects.

  6. Jaafar SHS, Hashim R, Hassan Z, Arifin N
    Trop Life Sci Res, 2018 Mar;29(1):195-212.
    PMID: 29644024 MyJurnal DOI: 10.21315/tlsr2018.29.1.13
    This study was conducted to determine the physical and chemical composition of goat milk produced by eight local farms located in the central region of Malaysia. Farms 1 to 4 (F1-SC, F2-SP, F3-SP, F4-SBC) reared Saanen-type goats while farms 5 to 8 (F5-JK, F6-JPEC, F7-JTC, F8-JC), Jamnapari-type goats. The common feedstuffs used in all farms comprised of fresh or silage from Napier grass, feed pellets, and brans while two farms, F5-JK and F6-JPEC supplemented the feeds with soybean-based product. The total solid content, dry matter, and proximate composition of goat milk and feedstuffs from the different farms were determined and the results analysed using principal component analysis. Total solid content of goat milk from the Jamnapari crossbreed had the highest solid content ranging from 11.81% to 17.54% compared to milk from farms with Saanen and Saanen crossbreed (10.95% to 14.63%). Jamnapari-type goats from F5-JK, F6-JPEC, and F8-JC had significantly higher (p < 0.05) milk fat and protein contents (7.36%, 7.14%, and 6.59% fat; 5.08%, 6.19%, and 4.23% protein, respectively) than milk from other farms but, milk produced by Saanen-type goats from F4-SBC contained similar protein content (4.34%) to that from F8-JC. Total ash and carbohydrate contents in milk ranged between 0.67% to 0.86% and 3.26% to 4.71%, respectively, regardless of goat breed. Feeding soybean-based products appear to have a positive influence on milk fat and protein content in Jamnaparitype goats.
  7. Hassan Z, Tnay JS, Sukardi Yososudarmo SM, Sabil S
    J Relig Health, 2021 Dec;60(6):4132-4150.
    PMID: 31902096 DOI: 10.1007/s10943-019-00971-y
    Workplace spirituality (WPS) has been associated with various benefits, including its potential to reduce work-family conflict. Previous studies have established that individual religiosity influences work-family enrichment. To date, there has been no reliable evidence on the relationship between WPS and work-to-family enrichment (WFE). Hence, the present research aimed to identify the relationship between the three components of WPS, namely inner life, meaningful work, and sense of community and WFE among employees of the public sector in Malaysia. In this study, data collection was conducted using questionnaires that were distributed to two public organizations, which managed to receive a total of 81% response rate. The results were in line with past studies, which indicated a significant and positive relationship between workplace spirituality dimensions (inner life, meaningful work, and sense of community) and WFE. The significant influence of the sense of community toward WFE is believed to be caused by the collectivist culture of Malaysians. Therefore, the aspect of community must be taken into consideration in order to increase work-family enrichment among employees, particularly in the context of religious and collectivist society.
  8. Wan-Hamat H, Lani MN, Hamzah Y, Alias R, Hassan Z, Mahat NA
    Trop Biomed, 2020 Mar 01;37(1):103-115.
    PMID: 33612722
    The microbiological quality of thirty ready-to-eat (RTE) keropok lekor (a sausage shape Malaysian fish product) was evaluated in comparison to microbiological guidelines for ready to eat foods. The two E. coli isolates were subjected to DNA sequencing, identified and tested for their resistance towards fifteen different antibiotics. The survival and growth of the isolated E. coli strains inoculated in keropok lekor at atmospheric air and vacuum packaging were also evaluated. Results revealed that four samples (13.33%) contained Enterobacteriaceae counts that exceeded the recommended allowable counts of 4.0 log10 CFU/g. Unsatisfactory level of coliforms (< 1.7 log10 CFU/g) was also observed in ten of the samples; two of which contained E. coli (2.1 ± 0.17 and 3.7 ± 0.02 log10 CFU/g), suggesting of poor hygiene and sanitation practices. While the 'Possible E10' E. coli strain was observably resistant towards Nalidixic acid (30µg) alone, B10 E. coli isolate was worryingly resistant towards Ampicillin (10µg), Ceftazidime (30µg), Ciprofloxacin (5µg), Ceftriaxone (30µg), Nalidixic acid (30µg) and Tetracycline (30µg). This study also revealed that the growth and survival of the 'Possible E10' and B10 E. coli strains were not significantly affected by vacuum packaging when stored at both 4°C and 28°C. Therefore, intervention programmes to alert and educate smallmedium enterprisers (SMEs) of keropok lekor producers on food safety as well as potential health risks that can be associated due to inappropriate handling procedures of such product, merits consideration.
  9. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

  10. Jasim RK, Hassan Z, Singh D, Boyer E, Gam LH
    J Addict Dis, 2021 Nov 08.
    PMID: 34747343 DOI: 10.1080/10550887.2021.1981122
    Mitragyna speciosa (Korth.) also known as kratom or ketum has been traditionally used for its diverse medicinal value in Southeast Asia. Despite of its therapeutic value, kratom's safety profile remains deficiently elucidated. Our study aims to characterize the urinary protein profile of regular kratom users to determine its toxic effects on renal functioning. A total of 171 respondents (comprising of n = 88 regular kratom users, and n = 83 healthy controls) were recruited for this study. Urine specimens were collected and analyzed using SDS-PAGE, followed by LC/MS/MS analysis. Our results show albumin is the primary, and most abundant form of protein excreted in kratom user's urine specimens (n = 60/64), indicating that kratom users are predisposed to proteinuria. Kratom users had an elevated urinary protein (with an intensity of 66.7 kDa band), and protein: creatinine ratio (PCR) concentrations relative to healthy controls. However, kratom user's urinary creatinine concentration was found to be in the normal range as the healthy control group. While, kratom users who tested positive for illicit drug use had an elevated urinary albumin concentration. Our preliminary findings indicate that regular consumption of freshly brewed kratom solution over a protracted period (for an average of eleven years) seems to induce proteinuria, suggestive of an early stage of kidney injury. Hence, further studies are urgently needed to confirm our findings, and establish kratom's renal impairing effects.
  11. Harun N, Kamaruzaman NA, Mohamed Sofian Z, Hassan Z
    Neurosci Lett, 2022 Jan 31;773:136500.
    PMID: 35114335 DOI: 10.1016/j.neulet.2022.136500
    Opioid use disorder (OUD) has become a significant public health issue worldwide. Methadone and buprenorphine are the most common medications used for treating OUD. These drugs have the potential to assist many patients in managing their opioid dependence and withdrawal but they are currently misused and associated with certain compliance issues, side effects, and risk of relapse. As an opioid-like herbal supplement, Mitragyna speciosa Korth or kratom has received increased attention for managing chronic pain and opioid withdrawal symptoms. Nevertheless, the use of kratom as a self-treatment medication for opioid dependence continues to be controversial due to concerns raised about its effectiveness, safety, and abuse liability. The main active alkaloid constituent of the plant, mitragynine, has been shown to act as a partial mu-opioid agonist. Given this pharmacology, studies have been focusing on this psychoactive compound to examine its potential therapeutic values as medication-assisted therapy (MAT). This review aims to provide a current preclinical overview of mitragynine as a prospective novel option for MAT and summarise the recent developments in determining if the plant's active alkaloid could provide an alternative to opioids in the treatment of OUD.
  12. Juvale IIA, Hassan Z, Has ATC
    Int J Med Sci, 2021;18(16):3851-3860.
    PMID: 34790061 DOI: 10.7150/ijms.60928
    Cancer is one of the leading causes of death in both developed and developing countries. Due to its heterogenous nature, it occurs in various regions of the body and often goes undetected until later stages of disease progression. Feasible treatment options are limited because of the invasive nature of cancer and often result in detrimental side-effects and poor survival rates. Therefore, recent studies have attempted to identify aberrant expression levels of previously undiscovered proteins in cancer, with the hope of developing better diagnostic tools and pharmaceutical options. One class of such targets is the π-subunit-containing γ-aminobutyric acid type A receptors. Although these receptors were discovered more than 20 years ago, there is limited information available. They possess atypical functional properties and are expressed in several non-neuronal tissues. Prior studies have highlighted the role of these receptors in the female reproductive system. New research focusing on the higher expression levels of these receptors in ovarian, breast, gastric, cervical, and pancreatic cancers, their physiological function in healthy individuals, and their pro-tumorigenic effects in these cancer types is reviewed here.
  13. Effendy MA, Yunusa S, Zain ZM, Hassan Z
    Neurosci Lett, 2021 10 15;763:136183.
    PMID: 34418508 DOI: 10.1016/j.neulet.2021.136183
    BACKGROUND: Mitragynine, the major indole alkaloid from Mitragyna speciosa has been reported previously to possess abuse liability. However, there are insufficient data suggesting the mechanism through which this pharmacological agent causes addiction.

    AIMS: In this study, we investigated the effects of mitragynine on dopamine (DA) level and dopamine transporter (DAT) expression from the rat's frontal cortex.

    METHODS: DA level was recorded in the brain samples of animals treated with acute or repeated exposure for 4 consecutive days with either vehicle or mitragynine (1 and 30 mg/kg) using electrochemical sensor. Animals were then decapitated and the brain regions were removed, snap-frozen in liquid nitrogen and immediately stored at -80 °C. DA level was quantified using Enzyme linked immunosorbent assay (ELISA) kits and DAT gene expression was determined using quantitative real time polymerase chain reaction (RT-qPCR).

    RESULTS/OUTCOME: Mitragynine (1 and 30 mg/kg) did not increase DA release following acute treatment, however, after repeated exposure at day 4, mitragynine significantly and dose dependently increased DA release in the frontal cortex. In this study, we also observed a significant increase in DAT mRNA expression at day 4 in group treated with mitragynine (30 mg/kg).

    CONCLUSION/INTERPRETATION: Data from this study indicates that mitragynine significantly increased DA release when administered repeatedly, increased in DAT mRNA expression with the highest tested dose (30 mg/kg). Therefore, the rewarding effects observed after mitragynine administration could be due to its ability to increase DA content in certain areas of the brain especially the frontal cortex.

  14. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
  15. Yusoff NHM, Hassan Z, Murugaiyah V, Müller CP
    Brain Res Bull, 2022 01;178:1-8.
    PMID: 34774992 DOI: 10.1016/j.brainresbull.2021.11.002
    Kratom, derived from the plant Mitragyna speciosa (M. speciosa) Korth is a traditional psychoactive preparation widely used in Southeast Asia and increasingly in the rest of the world. Use and abuse of Kratom preparations can be attributed to mitragynine (MIT), the main psychoactive compound isolated from its leaves. While MIT may have beneficial effects as a recreational drug, for pain management, and for opiate withdrawal, it may have an addiction potential at higher doses. However, its action in the reward system of the brain is currently unknown. This study investigated how mitragynine (10 mg/kg, i.p.) affects extracellular activity of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) of the brain, compared to morphine (MOR; 10 mg/kg, i.p.) and methamphetamine (METH; 10 mg/kg, i.p.). Using in-vivo microdialysis in freely moving rats, we found a significant increase of extracellular DA after MOR and METH, but not after MIT in all three brain regions. MIT led to a significant increase of DOPAC and/or HVA in these brain regions while MOR and METH had only moderate effects. These findings suggest a strong and prolonged effect of MIT on DA synthesis/metabolism, but not on extracellular DA activity, which may limit the addiction risk of MIT, in contrast to MOR and METH.
  16. Yusoff NHM, Mansor SM, Müller CP, Hassan Z
    Behav Brain Res, 2018 06 01;345:65-71.
    PMID: 29499286 DOI: 10.1016/j.bbr.2018.02.039
    Mitragynine is the major alkaloid found in the leaves of M. speciosa Korth (Rubiaceae), a plant that is native to Southeast Asia. This compound has been used, either traditionally or recreationally, due to its psychostimulant and opioid-like effects. Recently, mitragynine has been shown to exert conditioned place preference (CPP), indicating the rewarding and motivational properties of M. speciosa. Here, the involvement of GABAB receptors in mediating mitragynine reward is studied using a CPP paradigm in rats. First, we examined the effects of GABAB receptor agonist baclofen (1.25, 2.5 and 5 mg/kg) on the acquisition of mitragynine (10 mg/kg)-induced CPP. Second, the involvement of GABAB receptors in the expression of mitragynine-induced CPP was tested. We found that the acquisition of mitragynine-induced CPP could be blocked by higher doses (2.5 and 5 mg/kg) of baclofen. Baclofen at a high dose inhibited locomotor activity and caused a CPP. Furthermore, we found that baclofen (2.5 and 5 mg/kg) also blocked the expression of mitragynine-induced CPP. These findings suggest that both, the acquisition and expression of mitragynine's reinforcing properties is controlled by the GABAB receptor.
  17. Yusoff NHM, Mansor SM, Müller CP, Hassan Z
    Behav Brain Res, 2017 08 14;332:1-6.
    PMID: 28559179 DOI: 10.1016/j.bbr.2017.05.059
    Mitragynine is the main psychoactive ingredient of the herbal drug preparation Kratom (Ketum), derived from the plant Mitragyna speciosa. Kratom is a widely abused drug in Southeast Asian and has a psychostimulant profile at low-medium doses, while high doses have opioidergic effects. Mitragynine was shown to possess opiate receptor affinity. However, its role in the behavioural effects of mitragynine is unclear. Here we asked whether the reinforcing effects of mitragynine are mediated by opiate receptors using a conditioned place preference (CPP) paradigm in rats. In the first experiment we tested the effects of the opiate receptor antagonist naloxone (0.1, 0.3 and 1.0mg/kg) on the acquisition of mitragynine (10mg/kg)-induced CPP. In the second experiment, we tested the involvement of opiate receptors in the expression of mitragynine-induced CPP in rats. We found that naloxone suppresses the acquisition of mitragynine-induced CPP. This effect was already evident at a dose of naloxone (0.1mg/kg) which, by itself, had no conditioned place aversion (CPA) effect. Higher doses of naloxone induced a CPA and blocked mitragynine-induced CPP. In contrast, naloxone had no effect on the expression of mitragynine-induced CPP. These findings suggest that the acquisition, but not the expression of the reinforcing effects of mitragynine is mediated by opiate receptors.
  18. You CY, Hassan Z, Müller CP, Suhaimi FW
    Psychopharmacology (Berl), 2022 Jan;239(1):313-325.
    PMID: 34693456 DOI: 10.1007/s00213-021-05996-4
    RATIONALE: The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited.

    OBJECTIVES: We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects.

    METHODS: Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period.

    RESULTS: Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats.

    CONCLUSIONS: These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.

  19. Japarin RA, Harun N, Hassan Z, Müller CP
    Behav Brain Res, 2023 Sep 13;453:114638.
    PMID: 37619769 DOI: 10.1016/j.bbr.2023.114638
    Mitragynine (MG) is the primary active constituent of Mitragyna speciosa Korth (kratom), a psychoactive Southeast Asian plant with potential therapeutic use. Numerous studies support roles of dopaminergic system in drug reward. However, the involvement of the dopaminergic system in mediating MG reward and drug-seeking is poorly understood. Using conditioned place preference (CPP) paradigm, the present study aims to evaluate the roles of the dopamine (DA) D1 receptor in the acquisition and expression of MG-induced CPP in rats. The effects of SCH-23390, a selective DA D1 receptor antagonist, on the acquisition of MG-induced CPP were first investigated. Rats were pre-treated systemically with SCH-23390 (0, 0.1 and 0.3 mg/kg, i.p.) prior to MG (10 mg/kg) conditioning sessions. Next, we tested the effects of the DA D1 receptor antagonist on the expression of MG-induced CPP. Furthermore, the effects of a MG-priming dose (5 mg/kg) on the reinstatement of extinguished CPP were tested. The results showed that SCH-23390 dose-dependently suppressed the acquisition of a MG-induced CPP. In contrast, SCH-23390 had no effect on the expression of a MG-induced CPP. The findings of this study suggested a crucial role of the DA D1 receptor in the acquisition, but not the expression of the rewarding effects of MG in a CPP test. Furthermore, blockade of the D1-like receptor during conditioning did not prevent MG priming effects on CPP reinstatement test, suggesting no role for the DA D1 receptor in reinstatement sensitivity.
  20. Japarin RA, Harun N, Hassan Z, Shoaib M
    Behav Pharmacol, 2023 Apr 01;34(2-3):123-130.
    PMID: 36752325 DOI: 10.1097/FBP.0000000000000715
    Mitragynine (MG) is a pharmacologically active alkaloid derived from the leaves of Mitragyna speciosa Korth (Kratom). This plant has sparked significant interest as a potential alternative treatment for managing opioid dependence and withdrawal due to its opioid-like pharmacological effects. However, whether MG exposure would trigger opioid-seeking behaviour following abstinence has not been investigated. The present study examined the effects of MG priming on morphine-seeking behaviour in rats. Male Sprague-Dawley rats were initially trained to intravenously self-administer morphine (0.5 mg/kg/infusion) under a fixed ratio-3 schedule of reinforcement. Removal of both morphine infusions and drug-associated cues led to the subsequent extinction of the drug-seeking behaviour. Tests of reinstatement were made following exposure to a randomised order of intraperitoneal injections of MG (3, 10 and 30 mg/kg), morphine (5 mg/kg) and vehicle. Significant levels of drug-seeking behaviour were observed following extended access to morphine self-administration, which was extinguished following removal of morphine and cues indicative of morphine-seeking behaviour, supporting the relapse model. The present finding demonstrated that MG priming in a dose of 10 mg/kg resulted in the reinstatement of morphine-seeking behaviour, whereas the higher MG dose (30 mg/kg) tested suppressed the seeking response. This study indicated that exposure to a low MG dose may increase the likelihood of relapsing to opioids, suggesting that the potential of MG as a treatment for opioid management merits further scientific assessment of its ability to trigger relapse to opioid abuse.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links