MATERIALS AND METHODS: The Second Victim Experience and Support Tool for Recovery (SVEST-R) questionnaire was utilized to conduct an anonymous survey on the healthcare providers in Sarawak General Hospital (SGH) from August to October 2018.
RESULTS: A total of 482 respondents participated in the survey and 46.1% of the respondents reported SVE following their involvement in PSIs. Notably, symptoms such as flashbacks, fear, and stress tend to persist for longer durations compared to other symptoms. It is worth noting that non-work-related support received the highest mean (medical doctors = 3.83; nurses = 3.70), indicating that respondents preferred to seek emotional support from their friends and families. Furthermore, nurses reported a significantly higher experience of absenteeism following PSIs than doctors (p=0.003). In addition, most respondents expressed a desire for discussion or counselling with a respected peer or supervisor following their involvement in PSIs.
CONCLUSION: Present study reported a relatively high prevalence of SVE among healthcare providers at SGH. Hence, proactive measures, including non-work related and supervisor support, are essential in facilitating their overall well-being and successful recovery.
METHODOLOGY/PRINCIPAL FINDINGS: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with reverse transcription (RT). Assay specificities were assessed using clinical malaria samples and malaria-negative controls. The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi) and 1000-fold (P. vivax and P. cynomolgi). The Kamau et al. Plasmodium genus RT-qPCR assay was highly sensitive for P. knowlesi detection with a median LOD of ≤0.0002 parasites/μL compared to 0.002 parasites/μL for P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were enhanced for the Imwong et al. 18S rRNA (0.0007 parasites/μL) and Divis et al. real-time 18S rRNA (0.0002 parasites/μL) assays, but not for the Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were moderately improved at 0.02 and 0.002 parasites/μL, respectively (1000-fold change). For DBS P. knowlesi samples the use of RT also markedly improved the Plasmodium genus qPCR LOD from 19.89 to 0.08 parasites/μL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi.
CONCLUSIONS/SIGNIFICANCE: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.
METHODS: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls.
RESULTS: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi.
CONCLUSION: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.
RESULTS: First, ancient DNA analysis of an elite nomadic warrior from Chinge-Tey I has been carried out, thus a third wide-genome dataset for Aldy-Bel culture- one of the earliest nomadic cultures in Asia, is presented in this study. Second, we undertook a comparative analysis of genome-wide data of three mentioned Aldy-Bel culture representatives and individuals of the other Bronze and Early Iron Age population groups of Asia to estimate their possible genetic connections. Then, kinship analysis was undertaken for these three Aldy-Bel culture individuals. Finally, mitochondrial and Y-chromosome haplogroups of Chinge-Tey princely person were compared to those of other Aldy-Bel culture representatives and to individuals of subsequent Scythian-type Uyuk-Sagly culture in Tuva.
CONCLUSION: (1) Generating the third wide-genome of the enabled us to undertake its comparison with two other genomes of Aldy-Bel culture representatives (Arzhan-2, graves 14 and 22) and with other Bronze and Early Iron Age population groups in Asia to trace the origin and genetic connection of Aldy-Bel population, representing one of the earliest Scythian-type nomadic group. (2) The results obtained show that the princely individual from Chinge-Tey I and two 'king's associates' from Arzhan-2 were genetically close to nomads of simultaneous Tasmola culture in Eastern and Central Kazakhstan and pastoralists buried in the Early Iron Age cemeteries of present-day Xinjiang (first of all, Abusanteer archaeological site). Aldy-Bel culture representatives appeared also close to individuals of the Middle Bronze Age Okunevo culture in the Minusinsk Basin. Besides, Aldy-Bel pastoralists turned out genetically close to nomads of the subsequent Uyuk-Sagly culture in Mongolia (5th - 3rd centuries BC). (3) Ancient DNA kinship analyses, undertaken for three Aldy-Bel culture individuals pointed out to the absence of their tribe kinship. (4) On the other hand, Chinge-Tey warrior's mitochondrial haplogroup G was previously described in two (graves 14 and 5) individuals from Arzhan-2, including a female individual from the "royal" tomb 5. This result provided a possibility of maternal kinship among this so called 'queen' from Arzhan-2 and the princely person from Chinge-Tey I. This possibility supported a hypothesis of their family ties suggested on archaeological materials. Y-chromosome haplogroup Q1b1, revealed for the princely person, was widely distributed among local people of Aldy-Bel and subsequent Uyuk-Sagly cultures.