Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M
    J Hazard Mater, 2020 06 05;391:122248.
    PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248
    Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
  2. Foo CY, Lim HN, Mahdi MA, Wahid MH, Huang NM
    Sci Rep, 2018 May 09;8(1):7399.
    PMID: 29743664 DOI: 10.1038/s41598-018-25861-3
    Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
  3. Mohd Fudzi L, Zainal Z, Lim HN, Chang SK, Holi AM, Sarif Mohd Ali M
    Materials (Basel), 2018 Apr 29;11(5).
    PMID: 29710822 DOI: 10.3390/ma11050704
    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².
  4. Ibrahim I, Lim HN, Mohd Zawawi R, Ahmad Tajudin A, Ng YH, Guo H, et al.
    J Mater Chem B, 2018 Jul 28;6(28):4551-4568.
    PMID: 32254398 DOI: 10.1039/c8tb00924d
    Discovering the distinctive photophysical properties of semiconductor nanoparticles (NPs) has made these a popular subject in recent advances in nanotechnology-related analytical methods. Semiconductor NPs are well-known materials that have been widely used in photovoltaic devices such as optical sensors and bioimaging, and dye-sensitized solar cells (DSSCs), as well as for light-emitting diodes (LEDs). The use of a narrow-bandgap semiconductor such as CdS NPs in the photoelectrochemical (PEC) detection of chemicals and biological molecules plays a key role as a photosensitizer and promotes some specific advantages in light-harvesting media. Their size-controlled optical and electrical properties make NPs fascinating and promising materials for a variety of nanoscale photovoltaic devices. Moreover, charge injection from the narrow bandgap to the adjacent material leads to efficient charge separation and prolongs the electron lifetime by the elimination of the charge carrier recombination probability. In this regard, a single photon enables the production of multiple photogenerated charge carriers in CdS NPs, which subsequently boosts the effectiveness of the photovoltaic devices. In particular, the present review article highlights the recent emerging PEC detection methods based on CdS NPs, specifically related to the direct and indirect interactions of NPs with target analytes. The current opportunities and challenges in achieving real-world applications of CdS-based PEC sensing are also presented.
  5. Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, et al.
    Sensors (Basel), 2017 Dec 02;17(12).
    PMID: 29207463 DOI: 10.3390/s17122789
    This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10-6-10-9 M with the detection limit of 7.853 × 10-7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.
  6. Ng CH, Ripolles TS, Hamada K, Teo SH, Lim HN, Bisquert J, et al.
    Sci Rep, 2018 02 06;8(1):2482.
    PMID: 29410450 DOI: 10.1038/s41598-018-20228-0
    Perovskite solar cells based on series of inorganic cesium lead bromide and iodide mixture, CsPbBr3-xI x , where x varies between 0, 0.1, 0.2, and 0.3 molar ratio were synthesized by two step-sequential deposition at ambient condition to design the variations of wide band gap light absorbers. A device with high overall photoconversion efficiency of 3.98 % was obtained when small amount of iodide (CsPbBr2.9I0.1) was used as the perovskite and spiro-OMeTAD as the hole transport material (HTM). We investigated the origin of variation in open circuit voltage, Voc which was shown to be mainly dependent on two factors, which are the band gap of the perovskite and the work function of the HTM. An increment in Voc was observed for the device with larger perovskite band gap, while keeping the electron and hole extraction contacts the same. Besides, the usage of bilayer P3HT/MoO3 with deeper HOMO level as HTM instead of spiro-OMeTAD, thus increased the Voc from 1.16 V to 1.3 V for CsPbBr3 solar cell, although the photocurrent is lowered due to charge extraction issues. The stability studies confirmed that the addition of small amount of iodide into the CsPbBr3 is necessarily to stabilize the cell performance over time.
  7. Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ
    Environ Pollut, 2024 Jan 15;341:122980.
    PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980
    The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
  8. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN
    Polymers (Basel), 2021 Jun 18;13(12).
    PMID: 34207392 DOI: 10.3390/polym13122003
    Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique properties, easy synthesis, low cost, and high environmental stability in various applications such as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention. The most important PANI applications are briefly reviewed at the end of this review.
  9. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
  10. Chang BY, Huang NM, An'amt MN, Marlinda AR, Norazriena Y, Muhamad MR, et al.
    Int J Nanomedicine, 2012;7:3379-87.
    PMID: 22848166 DOI: 10.2147/IJN.S28189
    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte.
  11. Chook SW, Chia CH, Zakaria S, Ayob MK, Chee KL, Huang NM, et al.
    Nanoscale Res Lett, 2012;7(1):541.
    PMID: 23020815 DOI: 10.1186/1556-276X-7-541
    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.
  12. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
  13. Lim SP, Lim YS, Pandikumar A, Lim HN, Ng YH, Ramaraj R, et al.
    Phys Chem Chem Phys, 2017 Jan 04;19(2):1395-1407.
    PMID: 27976767 DOI: 10.1039/c6cp05950c
    In the present investigation, gold-silver@titania (Au-Ag@TiO2) plasmonic nanocomposite materials with different Au and Ag compositions were prepared using a simple one-step chemical reduction method and used as photoanodes in high-efficiency dye-sensitized solar cells (DSSCs). The Au-Ag incorporated TiO2 photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 7.33%, which is ∼230% higher than the unmodified TiO2 photoanode (2.22%) under full sunlight illumination (100 mW cm-2, AM 1.5G). This superior solar energy conversion efficiency was mainly due to the synergistic effect between the Au and Ag, and their surface plasmon resonance effect, which improved the optical absorption and interfacial charge transfer by minimizing the charge recombination process. The influence of the Au-Ag composition on the overall energy conversion efficiency was also explored, and the optimized composition with TiO2 was found to be Au75-Ag25. This was reflected in the femtosecond transient absorption dynamics in which the electron-phonon interaction in the Au nanoparticles was measured to be 6.14 ps in TiO2/Au75:Ag25, compared to 2.38 ps for free Au and 4.02 ps for TiO2/Au100:Ag0. The slower dynamics indicates a more efficient electron-hole separation in TiO2/Au75:Ag25 that is attributed to the formation of a Schottky barrier at the interface between TiO2 and the noble metal(s) that acts as an electron sink. The significant boost in the solar energy conversion efficiency with the Au-Ag@TiO2 plasmonic nanocomposite showed its potential as a photoanode for high-efficiency DSSCs.
  14. Samsudin NA, Zainal Z, Lim HN, Sulaiman Y, Chang SK, Lim YC, et al.
    RSC Adv, 2018 Jun 21;8(41):23040-23047.
    PMID: 35540159 DOI: 10.1039/c8ra03513j
    In this study, a composite material, manganese oxide/reduced titania nanotubes (Mn2O3/R-TNTs), was synthesized through incorporation of Mn2O3 onto R-TNTs via the reverse pulse electrodeposition technique. The influence of pulse reverse duty cycles on the morphological, structural and electrochemical performance of the surface was studied by varying the applied duty cycle from 10% to 90% for 5 min total on-time at an alternate potential of -0.90 V (E on) and 0.00 V (E off). FESEM analysis revealed the uniform deposition of Mn2O3 on the circumference of the nanotubes. The amount of Mn2O3 loaded onto the R-TNTs increased as a higher duty cycle was applied. Cyclic voltammetry and galvanostatic charge-discharge tests were employed to elucidate the electrochemical properties of all the synthesized samples in 1 M KCl. The specific capacitance per unit area was greatly enhanced upon the incorporation of Mn2O3 onto R-TNTs, but showed a decrease as a high duty cycle was applied. This proved that low amounts of Mn2O3 loading enhanced the facilitation of the active ions for charge storage purposes. The optimized sample, Mn2O3/R-TNTs synthesized at 10% duty cycle, exhibited high specific capacitance of 18.32 mF cm-2 at a current density of 0.1 mA cm-2 obtained from constant current charge-discharge measurements. This revealed that the specific capacitance possessed by Mn2O3/R-TNTs synthesized at 10% duty cycle was 6 times higher than bare R-TNTs.
  15. Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh HS, et al.
    Int J Nanomedicine, 2015;10:1505-19.
    PMID: 25759577 DOI: 10.2147/IJN.S75213
    PURPOSE: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum.

    METHODS: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods.

    RESULTS: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5).

    CONCLUSION: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.

  16. Abdul Bashid HA, Lim HN, Kamaruzaman S, Abdul Rashid S, Yunus R, Huang NM, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):246.
    PMID: 28381070 DOI: 10.1186/s11671-017-2010-3
    A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g(- 1), 13.35 Wh kg(- 1) and of 322.85 W kg(- 1), respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g(- 1). The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
  17. Lee HK, Talib ZA, Mamat Mat Nazira MS, Wang E, Lim HN, Mahdi MA, et al.
    Materials (Basel), 2019 Jul 18;12(14).
    PMID: 31323741 DOI: 10.3390/ma12142295
    The effect of NaOH solution on the formation of nanoparticles has been the subject of ongoing debate in selenium-based material research. In this project, the robust correlation between the mechanistic growth of zinc selenide/graphene oxide (ZnSe/GO) composite and the concentration of NaOH are elucidated. The ZnSe/GO composite was synthesized via microwave-assisted hydrothermal method and the concentrations of NaOH are controlled at 2 M, 3 M, 4 M, 5 M and 6 M. The XRD spectra show that the crystal phases of the samples exhibited a 100% purity of ZnSe when the concentration of sodium hydroxide (NaOH) was set at 4 M. The further increase of NaOH concentration leads to the formation of impurities. This result reflects the essential role of hydroxyl ions in modifying the purity state of ZnSe/GO composite. The optical band gap energy of ZnSe/GO composite also decreased from 2.68 eV to 2.64 eV when the concentration of NaOH increased from 2 M to 4 M. Therefore, it can be concluded that the optimum concentration of NaOH used in synthesizing ZnSe/GO composite is 4 M. This project provides an alternative green method in the formation of a high purity ZnSe/GO composite.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links