Displaying publications 21 - 40 of 86 in total

Abstract:
Sort:
  1. Ma L, Liu C, Cheah I, Yeo KT, Chambers GM, Kamar AA, et al.
    Acta Paediatr, 2019 01;108(1):70-75.
    PMID: 30080290 DOI: 10.1111/apa.14533
    AIM: The attitudes of neonatologists towards the active management of extremely premature infants in a developing country like China are uncertain.

    METHODS: A web-based survey was sent to neonatologists from 16 provinces representing 59.6% (824.2 million) of the total population of China on October 2015 and December 2017.

    RESULTS: A total of 117 and 219 responses were received in 2015 and 2017, respectively. Compared to 2015, respondents in 2017 were more likely to resuscitate infants <25 weeks of gestation (86% vs. 72%; p < 0.05), but few would resuscitate infants ≤23 weeks of gestation in either epoch (10% vs. 6%). In both epochs, parents were responsible for >50% of the costs of intensive care, but in 2017, significantly fewer clinicians would cease intensive care (75% vs. 88%; p < 0.05) and more would request for economic aid (40% vs. 20%; p < 0.05) if parents could not afford to pay. Resource availability (e.g. ventilators) was not an important factor in either initiation or continuation of intensive care (~60% in both epochs).

    CONCLUSION: Cost is an important factor in the initiation and continuation of neonatal intensive care in a developing country like China. Such factors need to be taken into consideration when interpreting outcome data from these regions.

  2. McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, et al.
    J Pathol, 2019 02;247(2):214-227.
    PMID: 30350370 DOI: 10.1002/path.5184
    Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5-year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology - the biological basis and clinical relevance of its seven sub-categories are currently unclear. By establishing the Asia-Pacific MBC (AP-MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan-cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for 'mixed' MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis-1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed-type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan-cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
  3. Autsavapromporn N, Liu C, Kobayashi A, Ahmad TAFT, Oikawa M, Dukaew N, et al.
    Radiat Res, 2019 02;191(2):211-216.
    PMID: 30526323 DOI: 10.1667/RR15155.1
    Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.
  4. Liu C, Hirakawa H, Tanaka K, Mohd Saaya F, Nenoi M, Fujimori A, et al.
    Dose Response, 2019 03 04;17(1):1559325819833840.
    PMID: 30858771 DOI: 10.1177/1559325819833840
    Radiotherapy (RT) treats cancer effectively with high doses of ionizing radiation (IR) to killing cancer cells and shrinking tumors while bearing the risk of developing different side effects, including secondary cancer, which is most concerning for long-term health consequences. Genomic instability (GI) is a characteristic of most cancer cells, and IR-induced GI can manifest as delayed homologous recombination (HR). Radioadaptive response (RAR) is capable of reducing genotoxicity, cell transformation, mutation, and carcinogenesis, but the rational evidence describing its contributions to the reduction of radiation risk, in particular, carcinogenesis, remains fragmented. In this work, to investigate the impact of RAR on high-dose, IR-induced GI measured as delayed HR, the frequency of recombinant cells was comparatively studied under RAR-inducible and -uninducible conditions in the nucleated cells in hematopoietic tissues (bone marrow and spleen) using the Rosa26 Direct Repeat-green fluorescent protein (RaDR-GFP) homozygote mice. Results demonstrated that the frequency of recombinant cells was significantly lower in hematopoietic tissues under RAR-inducible condition. These findings suggest that reduction in delayed HR may be at least a part of the mechanisms underlying decreased carcinogenesis by RAR, and application of RAR would contribute to a more rigorous and scientifically grounded system of radiation protection in RT.
  5. Tao Y, Han M, Gao X, Han Y, Show PL, Liu C, et al.
    Ultrason Sonochem, 2019 May;53:192-201.
    PMID: 30691995 DOI: 10.1016/j.ultsonch.2019.01.003
    This work studied the influences of water blanching pretreatment (30 s), surface contacting ultrasound (492.3 and 1131.1 W/m2) assisted air drying, and their combination on drying kinetics and quality of white cabbage. Contacting sonication was performed by placing samples on an ultrasonic vibration plate, and the drying temperature was 60 °C. Through drying kinetic analysis and numerical simulation considering internal and external resistances and shrinkage, it was found that both blanching pretreatment and contacting sonication during drying intensified internal water diffusion and external water exchange to shorten cabbage drying time. Meanwhile, blanching pretreatment was more effective to enhance the drying process. The largest reduction of drying time (from 145 min to 24 min) was obtained when sequential blanching and contacting sonication at 1131.1 W/m2 were conducted. Dehydrated cabbages with blanching pretreatment were characterized by green color and high retention of vitamin C, while a severe loss of vitamin C was found in dried cabbages without blanching pretreatment. Moreover, although both blanching and contacting sonication shortened the drying time, the losses of phenolics, glucosinolates and resulting breakdown products were not alleviated. Contents of total phenolics, one glucosinolates (sinigrin) and one glucobrassicin breakdown product (indole-3-acetoritrile) in only air dried cabbages were significantly (p 
  6. Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al.
    Transl Psychiatry, 2019 08 27;9(1):205.
    PMID: 31455759 DOI: 10.1038/s41398-019-0532-4
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
  7. Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, et al.
    Genome Biol, 2019 10 22;20(1):215.
    PMID: 31640808 DOI: 10.1186/s13059-019-1838-5
    Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
  8. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

  9. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
  10. Liu C, Wang S
    Zootaxa, 2020 Mar 23;4755(1):zootaxa.4755.1.2.
    PMID: 32230193 DOI: 10.11646/zootaxa.4755.1.2
    Based on the specimens collected in Mt. Trusmadi, Sabah, Malaysia, three new species of the genus Promalactis are described: P. clavivalvata sp. nov., P. abasiloba sp. nov. and P. trusmadiensis sp. nov. In addition, females of three previously known species (P. folivalva Wang, 2018, P. sectoralis Wang et al., 2013 and P. trigonilobata Wang, 2018) are described for the first time. Two species (P. sectoralis Wang et al., 2013 and P. pileata Wang, 2019) are newly recorded for Malaysia. Images of both adults and genitalia of the new species and the genitalia of the newly described females are provided.
  11. Foo JN, Chew EGY, Chung SJ, Peng R, Blauwendraat C, Nalls MA, et al.
    JAMA Neurol, 2020 06 01;77(6):746-754.
    PMID: 32310270 DOI: 10.1001/jamaneurol.2020.0428
    Importance: Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian).

    Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.

    Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria.

    Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores.

    Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12).

    Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.

  12. Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, et al.
    Lancet Gastroenterol Hepatol, 2020 08;5(8):739-752.
    PMID: 32413340 DOI: 10.1016/S2468-1253(20)30077-7
    BACKGROUND: Although non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity, it is increasingly being identified in non-obese individuals. We aimed to characterise the prevalence, incidence, and long-term outcomes of non-obese or lean NAFLD at a global level.

    METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, Scopus, and the Cochrane Library from inception to May 1, 2019, for relevant original research articles without any language restrictions. The literature search and data extraction were done independently by two investigators. Primary outcomes were the prevalence of non-obese or lean people within the NAFLD group and the prevalence of non-obese or lean NAFLD in the general, non-obese, and lean populations; the incidence of NAFLD among non-obese and lean populations; and long-term outcomes of non-obese people with NAFLD. We also aimed to characterise the demographic, clinical, and histological characteristics of individuals with non-obese NAFLD.

    FINDINGS: We identified 93 studies (n=10 576 383) from 24 countries or areas: 84 studies (n=10 530 308) were used for the prevalence analysis, five (n=9121) were used for the incidence analysis, and eight (n=36 954) were used for the outcomes analysis. Within the NAFLD population, 19·2% (95% CI 15·9-23·0) of people were lean and 40·8% (36·6-45·1) were non-obese. The prevalence of non-obese NAFLD in the general population varied from 25% or lower in some countries (eg, Malaysia and Pakistan) to higher than 50% in others (eg, Austria, Mexico, and Sweden). In the general population (comprising individuals with and without NAFLD), 12·1% (95% CI 9·3-15·6) of people had non-obese NAFLD and 5·1% (3·7-7·0) had lean NAFLD. The incidence of NAFLD in the non-obese population (without NAFLD at baseline) was 24·6 (95% CI 13·4-39·2) per 1000 person-years. Among people with non-obese or lean NALFD, 39·0% (95% CI 24·1-56·3) had non-alcoholic steatohepatitis, 29·2% (21·9-37·9) had significant fibrosis (stage ≥2), and 3·2% (1·5-5·7) had cirrhosis. Among the non-obese or lean NAFLD population, the incidence of all-cause mortality was 12·1 (95% CI 0·5-38·8) per 1000 person-years, that for liver-related mortality was 4·1 (1·9-7·1) per 1000 person-years, cardiovascular-related mortality was 4·0 (0·1-14·9) per 1000 person-years, new-onset diabetes was 12·6 (8·0-18·3) per 1000 person-years, new-onset cardiovascular disease was 18·7 (9·2-31·2) per 1000 person-years, and new-onset hypertension was 56·1 (38·5-77·0) per 1000 person-years. Most analyses were characterised by high heterogeneity.

    INTERPRETATION: Overall, around 40% of the global NAFLD population was classified as non-obese and almost a fifth was lean. Both non-obese and lean groups had substantial long-term liver and non-liver comorbidities. These findings suggest that obesity should not be the sole criterion for NAFLD screening. Moreover, clinical trials of treatments for NAFLD should include participants across all body-mass index ranges.

    FUNDING: None.

  13. Li Y, Liu C, Lin L, Li Y, Xiao J, Loh KH
    Zookeys, 2020;969:137-154.
    PMID: 33013170 DOI: 10.3897/zookeys.969.52069
    The southern lesser pomfret (Pampus minor) is an economically important fish, and its numbers are declining because of overfishing and environmental pollution. In addition, owing to the similarities of its external morphological characteristics to other species in the genus Pampus, it is often mistaken for grey pomfret (P. cinereus) or silver pomfret (P. argenteus) juveniles. In this study, the genetic diversity and structure of 264 P. minor individuals from 11 populations in China and Malaysia coastal waters were evaluated for the first time, to the best of our knowledge, using mitochondrial cytochrome b fragments. The results showed that P. minor had moderate haplotype diversity and low nucleotide diversity. Furthermore, two divergent lineages were detected within the populations, but the phylogenetic structure corresponded imperfectly with geographical location; thus, the populations may have diverged in different glacial refugia during the Pleistocene low sea levels. Analysis of molecular variation (AMOVA) showed that genetic variation originated primarily from individuals within the population. Pairwise FST results showed significant differentiation between the Chinese and Malaysian populations. Except for the Xiamen population, which was classified as a marginal population, the genetic differentiation among the other Chinese populations was not significant. During the Late Pleistocene, P. minor experienced a population expansion event starting from the South China Sea refugium that expanded outward, and derivative populations quickly occupied and adapted to the new habitat. The results of this study will provide genetic information for the scientific conservation and management of P. minor resources.
  14. Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, et al.
    Front Med (Lausanne), 2020;7:580796.
    PMID: 33363183 DOI: 10.3389/fmed.2020.580796
    Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly transfers from human to human via respiratory and gastrointestinal routes. The S-glycoprotein in the virus is the key factor for the entry of SARS-CoV-2 into the cell, which contains two functional domains: S1 is an angiotensin-converting enzyme 2 (ACE2) receptor binding domain, and S2 is necessary for fusion of the coronavirus and cell membranes. Moreover, it has been reported that ACE2 is likely to be the receptor for SARS-CoV-2. In addition, mRNA level expression of Furin enzyme and ACE2 receptor had been reported in airway epithelia, cardiac tissue, and enteric canals. However, the expression patterns of ACE2 and Furin in different cell types of oral tissues are still unclear. Methods: In order to investigate the potential infective channel of the new coronavirus via the oropharyngeal cavity, we analyze the expression of ACE2 and Furin in human oral mucosa using the public single-cell sequence datasets. Furthermore, immunohistochemistry was performed in mucosal tissue from different oral anatomical sites to confirm the expression of ACE2 and Furin at the protein level. Results: The bioinformatics results indicated the differential expression of ACE2 and Furin on epithelial cells from different oral anatomical sites. Immunohistochemistry results revealed that both the ACE2-positive and Furin-positive cells in the target tissues were mainly positioned in the epithelial layers, partly expressed in fibroblasts, further confirming the bioinformatics results. Conclusions: Based on these findings, we speculated that SARS-CoV-2 could invade oral mucosal cells through two possible routes: binding to the ACE2 receptor and fusion with cell membrane activated by Furin protease. Our results indicated that oral mucosa tissues are susceptible to SARS-CoV-2 that could facilitate COVID-19 infection via respiratory and fecal-oral routes.
  15. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  16. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
  17. Zhang M, Zhang K, Yu D, Xie Q, Liu B, Chen D, et al.
    Prev Vet Med, 2021 Aug;193:105399.
    PMID: 34118647 DOI: 10.1016/j.prevetmed.2021.105399
    Cardiomegaly is the main imaging finding for canine heart diseases. There are many advances in the field of medical diagnosing based on imaging with deep learning for human being. However there are also increasing realization of the potential of using deep learning in veterinary medicine. We reported a clinically applicable assisted platform for diagnosing the canine cardiomegaly with deep learning. VHS (vertebral heart score) is a measuring method used for the heart size of a dog. The concrete value of VHS is calculated with the relative position of 16 key points detected by the system, and this result is then combined with VHS reference range of all dog breeds to assist in the evaluation of the canine cardiomegaly. We adopted HRNet (high resolution network) to detect 16 key points (12 and four key points located on vertebra and heart respectively) in 2274 lateral X-ray images (training and validation datasets) of dogs, the model was then used to detect the key points in external testing dataset (396 images), the AP (average performance) for key point detection reach 86.4 %. Then we applied an additional post processing procedure to correct the output of HRNets so that the AP reaches 90.9 %. This result signifies that this system can effectively assist the evaluation of canine cardiomegaly in a real clinical scenario.
  18. Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al.
    Langmuir, 2021 08 03;37(30):9192-9201.
    PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345
    The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
  19. Cai M, Li X, Zhao H, Liu C, You Y, Lin F, et al.
    PMID: 34637273 DOI: 10.1021/acsami.1c15973
    Broadening light absorption and improving charge carrier separation are very critical to boost the water splitting efficiency in photoelectrochemical (PEC) systems. We herein reported a heterostructured photoanode consisting of BiVO4 and eco-friendly, near-infrared (NIR) CuInSeS@ZnS core-shell quantum dots (QDs) for PEC water oxidation. The decoration of core-shell QDs concurrently extends the absorption range of BiVO4 from the ultraviolet-visible to NIR region and promotes the effective separation and transfer of photo-excited electrons and holes. Without any sacrificial agents and co-catalysts, the as-fabricated NIR core-shell QDs/BiVO4 heterostructured photoanodes exhibit an approximately fourfold higher photocurrent density than that of the bare BiVO4, up to 3.17 mA cm-2 at 1.23 V versus the reversible hydrogen electrode. It is revealed that both a suitable band alignment and an intimate interfacial junction between QDs and BiVO4 are the main factors that result in enhanced charge separation and transfer efficiencies. We also highlight that the NIR CISeS QDs passivated with a ZnS shell can suppress the non-radiative recombination and enhance the stability of the QD photoanodes for optimized PEC performance. This work provides a facile and effective approach to boost the water oxidation efficiency of semiconductor photoanodes via utilizing NIR core-shell QDs as a light sensitizer and charge carrier separator.
  20. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Phys Rev Lett, 2021 Nov 05;127(19):191801.
    PMID: 34797136 DOI: 10.1103/PhysRevLett.127.191801
    The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302  pb^{-1}. Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as σ_{WW}=37.0_{-5.2}^{+5.5}(stat)_{-2.6}^{+2.7}(syst)  pb, σ_{WZ}=6.4_{-2.1}^{+2.5}(stat)_{-0.3}^{+0.5}(syst)  pb, and σ_{ZZ}=5.3_{-2.1}^{+2.5}(stat)_{-0.4}^{+0.5}(syst)  pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links