Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Low PH, Abdullah JY, Abdullah AM, Yahya S, Idris Z, Mohamad D
    J Craniofac Surg, 2019 Jun 28.
    PMID: 31261343 DOI: 10.1097/SCS.0000000000005713
    PURPOSE: Decompressive craniectomy is a life-saving procedure in the setting of malignant brain swelling. Patients who survive require cranioplasty for anatomical reconstruction and cerebral protection. Autologous cranioplasty remains the commonest practice nowadays, but partial bone flap defects are frequently encountered. The authors, therefore, seek to develop a new technique of reconstruction for cranioplasty candidate with partial bone flap defect utilizing computer-assisted 3D modeling and printing.

    METHODS: A prospective study was conducted to evaluate the outcome of a new reconstruction technique that produces patient-specific hybrid polymethyl methacrylate-autologous cranial implant. Computer-assisted 3D modeling and printing was utilized to produce patient-specific molds, which allowed real-time reconstruction of bone flap with partial defect intra-operatively.

    RESULTS: Outcome assessment for 11 patients at 6 weeks and 3 months post-operatively revealed satisfactory implant alignment with favorable cosmesis. The mean visual analog scale for cosmesis was 91. Mean implant size was 50cm, and the mean duration of intra-operative reconstruction was 30 minutes. All of them revealed improvement in quality of life following surgery as measured by the SF-36 score. Cost analysis revealed that this technique is more cost-effective compared to customized cranial prosthesis.

    CONCLUSION: This new technique and approach produce hybrid autologous-alloplastic bone flap that resulted in satisfactory implant alignment and favorable cosmetic outcome with relatively low costs.

  2. Subhi H, Husein A, Mohamad D, Nik Abdul Ghani NR, Nurul AA
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641172 DOI: 10.3390/polym13193358
    Calcium silicate-based cements (CSCs) are widely used in various endodontic treatments to promote wound healing and hard tissue formation. Chitosan-based accelerated Portland cement (APC-CT) is a promising and affordable material for endodontic use. This study investigated the effect of APC-CT on apoptosis, cell attachment, dentinogenic/osteogenic differentiation and mineralization activity of stem cells from human exfoliated deciduous teeth (SHED). APC-CT was prepared with various concentrations of chitosan (CT) solution (0%, 0.625%, 1.25% and 2.5% (w/v)). Cell attachment was determined by direct contact analysis using field emission scanning electron microscopy (FESEM); while the material extracts were used for the analyses of apoptosis by flow cytometry, dentinogenic/osteogenic marker expression by real-time PCR and mineralization activity by Alizarin Red and Von Kossa staining. The cells effectively attached to the surfaces of APC and APC-CT, acquiring flattened elongated and rounded-shape morphology. Treatment of SHED with APC and APC-CT extracts showed no apoptotic effect. APC-CT induced upregulation of DSPP, MEPE, DMP-1, OPN, OCN, OPG and RANKL expression levels in SHED after 14 days, whereas RUNX2, ALP and COL1A1 expression levels were downregulated. Mineralization assays showed a progressive increase in the formation of calcium deposits in cells with material containing higher CT concentration and with incubation time. In conclusion, APC-CT is nontoxic and promotes dentinogenic/osteogenic differentiation and mineralization activity of SHED, indicating its regenerative potential as a promising substitute for the commercially available CSCs to induce dentin/bone regeneration.
  3. Yassin SM, Mohamad D, Togoo RA, Sanusi SY, Johari Y
    J Mech Behav Biomed Mater, 2023 Sep;145:106037.
    PMID: 37499522 DOI: 10.1016/j.jmbbm.2023.106037
    The purpose of this study was to systematically review the impact of nanofillers on the physicomechanical properties of resin-based pit and fissure sealants (RBS). This review included in vitro studies with full-length English-language articles reporting on the physicomechanical properties of nanofilled RBS until February 2023. PubMed, Web of Sciences, Scopus, and LILACS databases were accessed for literature searches. The review was formulated based on the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and used the Consolidated Standards of Reporting Trials (CONSORT) guidelines and risk of bias Cochrane tool for quality assessment. The search resulted in 539 papers, of which 22 were eligible to be included in the review. Inorganic, polymeric, core-shell, and composite nanomaterials were used to reinforce the studied RBS. The inherent nature of the nanomaterial used, its morphology, concentration, and volume used were the primary parameters that determined the nanomaterial's success as a filler in RBS. These parameters also influenced their interaction with the resin matrix, which influenced the final physicomechanical properties of RBS. The use of nanofillers that were non-agglomerated and well dispersed in the resin matrix enhanced the physicomechanical properties of RBS.
  4. Saddki N, Mohamad H, Mohd Yusof NI, Mohamad D, Mokhtar N, Wan Bakar WZ
    Health Qual Life Outcomes, 2013 Jun 20;11:100.
    PMID: 23786866 DOI: 10.1186/1477-7525-11-100
    BACKGROUND: The objective of this study was to determine the validity and reliability of the Malay translated Sleep Apnea Quality of Life Index (SAQLI) in patients with obstructive sleep apnea (OSA).

    METHODS: In this cross sectional study, the Malay version of SAQLI was administered to 82 OSA patients seen at the OSA Clinic, Hospital Universiti Sains Malaysia prior to their treatment. Additionally, the patients were asked to complete the Malay version of Medical Outcomes Study Short Form (SF-36). Twenty-three patients completed the Malay version of SAQLI again after 1-2 weeks to assess its reliability.

    RESULTS: Initial factor analysis of the 40-item Malay version of SAQLI resulted in four factors with eigenvalues >1. All items had factor loadings >0.5 but one of the factors was unstable with only two items. However, both items were maintained due to their high communalities and the analysis was repeated with a forced three factor solution. Variance accounted by the three factors was 78.17% with 9-18 items per factor. All items had primary loadings over 0.5 although the loadings were inconsistent with the proposed construct. The Cronbach's alpha values were very high for all domains, >0.90. The instrument was able to discriminate between patients with mild or moderate and severe OSA. The Malay version of SAQLI correlated positively with the SF-36. The intraclass correlation coefficients for all domains were >0.90.

    CONCLUSIONS: In light of these preliminary observations, we concluded that the Malay version of SAQLI has a high degree of internal consistency and concurrent validity albeit demonstrating a slightly different construct than the original version. The responsiveness of the questionnaire to changes in health-related quality of life following OSA treatment is yet to be determined.

  5. Nursin R, Harun MH, Mohamad D, Mohd Bakhori SK, Mahmud S
    Biomed Mater Eng, 2023 Nov 24.
    PMID: 38007638 DOI: 10.3233/BME-230118
    BACKGROUND: Zinc oxide eugenol (ZOE) cement is a popular dental material due mainly to its analgesic, antibacterial and anti-inflammatory effects. The formulation of ZOE cement from nano particle-sized zinc oxide (ZnO) has the potential to increase these properties as well as reduce its adverse effects to the surrounding tissues.

    OBJECTIVE: This study evaluated the subcutaneous tissue response towards nano ZOE cements (ZOE-A and ZOE-B) in comparison to conventional ZOE (ZOE-K).

    METHODS: Test materials were implanted into 15 New Zealand white rabbits. Tissue samples were obtained after 7, 14, and 30 days (n = 5 per period) for histopathological evaluation of inflammatory cell infiltrate, fibrous tissue condensation, and abscess formation.

    RESULTS: ZOE-A showed the lowest score for the variable macrophage and lymphocyte at day 7. Both ZOE-A and ZOE-B presented lower fibrous tissue condensation and abscess formation compared to conventional ZOE-K. By day 30, ZOE-A exhibited less lymphocytic and neutrophilic infiltrate compared to the other materials, while ZOE-B had the lowest score for macrophages. ZOE-K exerted higher inflammatory cell response at almost all of the experimental periods. All of the materials resulted in thin fiber condensation after 30 days.

    CONCLUSIONS: Rabbit tissue implanted with ZOE-A and ZOE-B showed better response compared to ZOE-K.

  6. Azlisham NAF, Johari Y, Mohamad D, Yhaya MF, Mahmood Z
    Proc Inst Mech Eng H, 2023 Dec;237(12):1339-1347.
    PMID: 38014749 DOI: 10.1177/09544119231208222
    This study evaluated the use of urethane dimethacrylate (UDMA) as a base monomer to prepare the newly developed flowable composite (FC) using nanohybrid silica derived from rice husk in comparison to bisphenol A-glycidyl methacrylate (Bis-GMA) on the degree of conversion and physicomechanical properties. The different loadings of base monomer to diluent monomer were used at the ratio of 40:60, 50:50, and 60:40. The bonding analysis confirmed the presence of nanohybrid silica in the newly developed FC. Independent t-test revealed a statistically significant increase in the degree of conversion, depth of cure and Vickers hardness of the UDMA-based FC, while surface roughness showed comparable results between the two base monomers. In conclusion, UDMA-based FC demonstrated superior performance with 60%-65% conversions, a significantly higher depth of cure exceeding 1 mm which complies with the Internal Standard of Organization 4049 (ISO 4049), and a substantial increase in Vickers hardness numbers compared to Bis-GMA-based FC, making UDMA a suitable alternative to Bis-GMA as a base monomer in the formulation of this newly developed FC derived from rice husk.
  7. Mohd Bakhori SK, Mahmud S, Ling CA, Sirelkhatim AH, Hasan H, Mohamad D, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:868-877.
    PMID: 28576061 DOI: 10.1016/j.msec.2017.04.085
    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate.
  8. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al.
    Nanomicro Lett, 2015;7(3):219-242.
    PMID: 30464967 DOI: 10.1007/s40820-015-0040-x
    Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH- (hydroxyl radicals), and O2 -2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
  9. Ramlan AR, Mohamed Nazar NI, Tumian A, Ab Rahman NS, Mohamad D, Abdul Talib MS, et al.
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S810-S815.
    PMID: 33828381 DOI: 10.4103/jpbs.JPBS_3_20
    Introduction: Methadone maintenance therapy (MMT) program helped to improve access to antiretroviral therapy (ART) among people who inject drugs (PWID) with human immunodeficiency virus (HIV). However, the time to treatment initiation (TTI) and outcomes of ART intervention in this population have scarcely been analyzed.

    Objectives: The aim of this study was to analyze the TTI and outcomes of ART among MMT clients in primary health-care centers in Kuantan, Pahang.

    Materials and Methods: This was a retrospective evaluation of MMT clients from 2006 to 2019. The TTI was calculated from the day of MMT enrolment to ART initiation. The trends of CD4 counts and viral loads were descriptively evaluated. Cox proportional hazard model was used to analyze the survival and treatment retention rate.

    Results: A total of 67 MMT clients from six primary health-care centers were HIV-positive, of which 37 clients were started on ART. The mean TTI of ART was 27 months. The clients who were given ART had a mean CD4 count of 119 cells/mm3 at baseline and increased to 219 cells/mm3 after 6 months of ART. Only two patients (5.4%) in the ART subgroup had an unsuppressed viral load. The initiation of ART had reduced the risk of death by 72.8% (hazard ratio = 0.27, P = 0.024), and they are 13.1 times more likely to remain in treatment (P < 0.01).

    Conclusion: The TTI of ART was delayed in this population. MMT clients who were given ART have better CD4 and viral load outcomes, helped reduced death risk and showed higher retention rates in MMT program.

  10. Manan TSBA, Kamal NLM, Beddu S, Khan T, Mohamad D, Syamsir A, et al.
    Sci Rep, 2021 06 16;11(1):12722.
    PMID: 34135374 DOI: 10.1038/s41598-021-92017-1
    The potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine's air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links