Displaying publications 21 - 40 of 40 in total

Abstract:
Sort:
  1. Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, et al.
    Lipids, 2019 06;54(6-7):369-379.
    PMID: 31124166 DOI: 10.1002/lipd.12154
    Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
  2. Tan MC, Ng OC, Yap RYP, Pan Y, Chieng JY
    Fecal occult blood test (FOBT) screening has been shown to decrease the incidence and mortality of colorectal cancer (CRC). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the immunochemical fecal occult blood test (i-FOBT) in diagnosing CRC were assessed among the patients in a tertiary referral hospital in Malaysia. A total sample of 814 patients aged 16 to 85 years old who performed i-FOBT and endoscopic screenings was obtained. The patients were recruited for a retrospective investigation. Sensitivity, specificity, PPV, and NPV were derived for the CRC screenees. Out of the 814 patients screened using i-FOBT, half of them were above 59 years old (49.6%), and 36% had positive i-FOBT. Gender distribution was almost equal, where 53.4% of the patients were female, and 46.6% were male. Majority of the patients were Malays (56.6%), followed by Chinese (24.0%), Indians (16.5%), and others (2.9%). Among the 71 patients referred for colonoscopy, 57.7% and 42.3% corresponded to positive and negative i-FOBT cases, respectively. Polyps were found to be most common among the patients (25.6%), 7.0% were found positive for invasive CRC, and 35.2% had normal colonoscopic findings. There was a significant association between colonoscopic finding and positive i-FOBT (p=0.001). The sensitivity, specificity, PPV, and NPV for CRC detection were 66.7%, 43.0%, 9.8%, and 93.3%, respectively. The results indicate that i-FOBT is a useful tool in the detection of abnormalities in the lower gastrointestinal tract and therefore serves as a cornerstone for potential large-scale screening programmes.
  3. Lim SYM, Alshagga MA, Alshawsh MA, Ong CE, Pan Y
    Drug Metab Pers Ther, 2021 Aug 17;37(1).
    PMID: 35146975 DOI: 10.1515/dmpt-2021-1000196
    OBJECTIVES: Khat, a natural amphetamine-like psychostimulant plant, are widely consumed globally. Concurrent intake of khat and xenobiotics may lead to herb-drug interactions and adverse drug reactions (ADRs). This study is a continuation of our previous study, targeted to evaluate the in vitro inhibitory effects of khat ethanol extract (KEE) on human cytochrome (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5, major human drug metabolizing enzymes.

    METHODS: In vitro fluorescence enzyme assays were employed to assess CYPs inhibition with the presence and absence of various KEE concentrations.

    RESULTS: KEE reversibly inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 but not CYP1A2 with IC50 values of 25.5, 99, 4.5, 21, 27, 17, and 10 μg/mL respectively. No irreversible inhibition of KEE on all the eight CYPs were identified. The Ki values of CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were 20.9, 85, 4.8, 18.3, 59.3, 3, and 21.7 μg/mL, respectively. KEE inhibited CYP2B6 via competitive or mixed inhibition; CYP2E1 via un-competitive or mixed inhibition; while CYP2A6, CYP2C8, CYP2C19, CYP2J2 and CYP3A5 via non-competitive or mixed inhibition.

    CONCLUSIONS: Caution should be taken by khat users who are on medications metabolized by CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5.

  4. Lim SYM, Alshagga M, Kong C, Alshawsh MA, Alshehade SA, Pan Y
    Arch Toxicol, 2022 12;96(12):3163-3174.
    PMID: 36175686 DOI: 10.1007/s00204-022-03382-3
    With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
  5. Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE
    Drug Metab Pers Ther, 2021 Apr 09;36(4):259-270.
    PMID: 34821124 DOI: 10.1515/dmpt-2020-0182
    OBJECTIVES: Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6.

    METHODS: CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking.

    RESULTS: The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition.

    CONCLUSIONS: Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.

  6. Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Yiap BC, et al.
    Biopharm Drug Dispos, 2018 Apr;39(4):205-217.
    PMID: 29488228 DOI: 10.1002/bdd.2127
    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC50 value of 32.23 μM and Ki value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 μM and Ki of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.
  7. Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE
    Appl Biochem Biotechnol, 2018 Sep;186(1):132-144.
    PMID: 29524040 DOI: 10.1007/s12010-018-2728-0
    Genetic polymorphism of the cytochrome P450 (CYP) genes particularly affects CYP2D6 and CYP2C19 to a functionally relevant extent, and it is therefore crucial to elucidate the enzyme kinetic and molecular basis for altered catalytic activity of these allelic variants. This study explored the expression and function of the reported alleles CYP2D6*2, CYP2D6*10, CYP2D6*17, CYP2C19*23, CYP2C19*24, and CYP2C19*25 with respect to gene polymorphisms. Site-directed mutagenesis (SDM) was carried out to generate these six alleles. After DNA sequencing, the CYP2D6 and CYP2C19 wild types alongside with their alleles were each independently co-expressed with NADPH-CYP oxidoreductase (OxR) in Escherichia coli. The expressed proteins were analyzed using Western blotting, reduced carbon monoxide (CO) difference spectral scanning, and cytochrome c reductase assay. Results from Western blot revealed the presence of all CYP wild-type and allelic proteins in E. coli membrane fractions. The reduced CO difference spectra scanning presented the distinct peak of absorbance at 450 nm, and the cytochrome c reductase assay has confirmed that spectrally active OxR was expressed in each protein preparation. As a conclusion, the results obtained from this study have proven the CYP variants to be immunoreactive and spectrally active and are suitable for use to examine biotransformation and interaction mechanism of the enzymes.
  8. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Drug Metab Bioanal Lett, 2022;15(1):51-63.
    PMID: 35049443 DOI: 10.2174/1872312815666220113125232
    BACKGROUND: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population.

    METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.

    RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.

    CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.

  9. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Toxicol Rep, 2022;9:759-768.
    PMID: 36518400 DOI: 10.1016/j.toxrep.2022.03.040
    Cathinone is the psychostimulatory major active ingredient of khat (Catha edulis Forsk) and are often co-abused with alcohols and polydrugs. With the increased consumption of khat and cathinones on a global scale, efforts should be channelled into understanding and minimising the excruciating effects of possible khat-drug interactions. This study aimed to determine the in vitro inhibitory effects of cathinone on CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 and the in silico identification of their type of interactions and residues involved. The activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were examined by fluorescence based assays using recombinant cDNA-expressed human CYPs in Vivid® P450 screening kits. Cathinone reversibly inhibited CYP1A2, CYP2A6 and CYP3A5 via competitive, uncompetitive and noncompetitive modes with inhibition constant (Ki) values of 57.12, 13.75 and 23.57 µM respectively. Cathinone showed negligible inhibitory effects on CYP2B6, CYP2C8, CYP2C19, CYP2E1 and CYP2J2. Cathinone showed negligible time dependent inhibition on all 8 CYPs. Docking studies was performed on cathinone with CYP1A2, CYP2A6 and CYP3A5 following their inhibition in vitro. Cathinone is bound to a few key amino acid residues in the active sites while π-π interactions are formed in aromatic clusters of CYP1A2 and CYP3A5. These findings offer valuable reference for the use of cathinones and khat when combined with therapeutic drugs that are metabolised by CYP enzymes especially patients on medications metabolised by CYP1A2, CYP2A6 and CYP3A5.
  10. Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Ong CE
    Drug Metab Pers Ther, 2021 Apr 08.
    PMID: 33831979 DOI: 10.1515/dmdi-2020-0182
    OBJECTIVES: Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6.

    METHODS: CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking.

    RESULTS: The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition.

    CONCLUSIONS: Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.

  11. Lim SYM, Lim W, Peter AP, Pan Y, Alshagga M, Alshawsh MA
    J Appl Toxicol, 2024 Oct 04.
    PMID: 39367649 DOI: 10.1002/jat.4707
    The CYP33 family in Caenorhabditis elegans is integral to processes like xenobiotic detoxification, eicosanoid regulation, nanotoxicity response and spermatogenesis. Limited research on C. elegans CYP33 suggests its functions are similar to human CYP33, indicating conserved roles in metabolism and disease. This review examines C. elegans CYP33 enzymes, especially CYP-33E1 and CYP-33E2, and their human homologues, focusing on their roles in eicosanoid biosynthesis, xenobiotic metabolism, nanotoxicity and spermatogenesis. Understanding these enzymes enhances insights into cytochrome P450 biology, metabolism and cyp-associated diseases.
  12. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Int J Toxicol, 2022;41(5):355-366.
    PMID: 35658727 DOI: 10.1177/10915818221103790
    Cathine is the stable form of cathinone, the major active compound found in khat (Catha edulis Forsk) plant. Khat was found to inhibit major phase I drug metabolizing cytochrome P450 (CYP) enzyme activities in vitro and in vivo. With the upsurge of khat consumption and the potential use of cathine to combat obesity, efforts should be channelled into understanding potential cathine-drug interactions, which have been rather limited. The present study aimed to assess CYPs activity and inhibition by cathine in a high-throughput in vitro fluorescence-based enzyme assay and molecular docking analysis to identify how cathine interacts within various CYPs' active sites. The half maximal inhibitory concentration (IC50) values of cathine determined for CYP2A6 and CYP3A4 were 80 and 90 μM, while CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2 and CYP3A5 showed no significant inhibition. Furthermore, in Ki analysis, the Lineweaver-Burk plots depicted non-competitive mixed inhibition of cathine on both CYP2A6 and CYP3A4 with Ki value of 63 and 100 μM, respectively. Cathine showed negligible time-dependent inhibition on CYPs. Further, molecular docking studies showed that cathine was bound to CYP2A6 via hydrophobic, hydrogen and π-stacking interactions and formed hydrophobic and hydrogen bonds with active site residues in CYP3A4. Both molecular docking prediction and in vitro outcome are in agreement, granting more detailed insights for predicting CYPs metabolism besides the possible cathine-drug interactions. Cathine-drug interactions may occur with concomitant consumption of khat or cathine-containing products with medications metabolized by CYP2A6 and CYP3A4.
  13. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2010 Jul 20;130(2):275-83.
    PMID: 20457244 DOI: 10.1016/j.jep.2010.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (CA) has been widely cultivated as a vegetable or spice in China, Southeast Asia, India, Sri Lanka, Africa, and Oceanic countries and traditionally used for wound healing and maintaining normal blood pressure.

    AIM OF THE STUDY: The present study was carried out to examine the potential modulatory effects of three commercially available active components (asiaticoside, asiatic acid and madecassic acid) and four extracts (aqueous, ethanol, dichloromethane and hexane) of CA on three major cDNA-expressed human cytochrome P450 (CYP) isoforms.

    MATERIALS AND METHODS: High-performance liquid chromatography (HPLC)-based enzyme assays, namely tolbutamide 4-methyhydroxylase, dextromethorphan O-demethylase and testosterone 6beta-hydroxylase assays were developed to probe activities of CYP2C9, CYP2D6 and CYP3A4, respectively. Probe substrates were incubated with or without each active component and extract for each isoform, followed by examination of the kinetics parameters, IC(50) and K(i), to characterize modulatory effects.

    RESULTS: CYP2C9 was more susceptible to inhibitory effects by CA extracts compared to CYP2D6 and CYP3A4. Moderate degree of inhibition was observed in ethanol (K(i)=39.1 microg/ml) and dichloromethane (K(i)=26.6 microg/ml) extracts implying potential risk of interaction when CYP2C9 substrates are consumed with CA products. The two extracts however showed negligible inhibition towards CYP2D6 and CYP3A4 (IC(50)'s of 123.3 microg/ml and above). Similarly CA aqueous and hexane extracts did not significantly inhibit all three isoforms investigated (IC(50)'s of 117.9 microg/ml and above). Among the active constituents investigated, asiatic acid and madecassic acid appeared to selectively inhibit CYP2C9 and CYP2D6 more than CYP3A4. Of particular interest is the potent inhibitory effect of asiatic acid on CYP2C9 (K(i)=9.1 microg/ml). This signifies potential risk of interaction when substrates for this isoform are taken together with CA products with high asiatic acid content. Inhibitions of asiatic acid with the other isoforms and that of madecassic acid with all isoforms were only moderate (K(i)'s ranged from 17.2 to 84.4 microg/ml). On the other hand, the IC(50) values for asiaticoside were high (1070.2 microg/ml or above) for all three isoforms, indicating negligible or low potential of this compound to modulate CYP enzymatic activity.

    CONCLUSION: Centella asiatica extracts and active constituents inhibited CYP2C9, CYP2D6 and CYP3A4 activities with varying potency with CYP2C9 being the most susceptible isoform to inhibition. Significant inhibition was observed for asiatic acid and CA ethanol and dichloromethane extracts, implying involvement of semipolar constituents from CA in the effect. This study suggested that CA could cause drug-herb interactions through CYP2C9 inhibition.

  14. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Nat Med, 2011 Jul;65(3-4):440-7.
    PMID: 21365364 DOI: 10.1007/s11418-011-0516-z
    We investigated the effects of Andrographis paniculata (AP) extracts and andrographolide on the catalytic activity of three human cDNA-expressed cytochrome P450 enzymes: CYP2C9, CYP2D6 and CYP3A4. In vitro probe-based high performance liquid chromatography assays were developed to determine CYP2C9-dependent tolbutamide methylhydroxylation, CYP2D6-dependent dextromethorphan O-demethylation and CYP3A4-dependent testosterone 6β-hydroxylation activities in the presence and absence of AP extracts and andrographolide. Our results indicate that AP ethanol and methanol extracts inhibited CYP activities more potently than aqueous and hexane extracts across the three isoforms. Potent inhibitory effects were observed on CYP3A4 and CYP2C9 activities (K (i) values below 20 μg/ml). Andrographolide was found to exclusively but weakly inhibit CYP3A4 activity. In conclusion, data presented in this study suggest that AP extracts have the potential to inhibit CYP isoforms in vitro. There was, however, variation in the potency of inhibition depending on the extracts and the isoforms investigated.
  15. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):881-7.
    PMID: 21093571 DOI: 10.1016/j.jep.2010.11.026
    Andrographis paniculata (AP), Centella asiatica (CA) and Orthosiphon stamineus (OS) are three popular herbs traditionally used worldwide. AP is known for the treatment of infections and diabetes and CA is good for wound healing and healthy skin while OS is usually consumed as tea to treat kidney and urinary disorders. Interaction of these herbs with human cytochrome P450 2C19 (CYP2C19), a major hepatic CYP isoform involved in metabolism of many clinical drugs has not been investigated to date.
  16. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    Chem Biol Interact, 2011 Mar 15;190(1):1-8.
    PMID: 21276781 DOI: 10.1016/j.cbi.2011.01.022
    Orthosiphon stamineus (OS) has been traditionally used to treat diabetes, kidney and urinary disorders, high blood pressure and bone or muscular pain. To assess the possibility of drug-herb interaction via interference of metabolism, effects of four OS extracts of different polarity and three active constituents (sinensetin, eupatorin and rosmarinic acid) on major human cDNA-expressed cytochrome P450 (CYP) enzymes were investigated. Three substrate-probe based high-performance liquid chromatography (HPLC) assays were established to serve as activity markers for CYP2C9, CYP2D6 and CYP3A4. Our results indicate that OS extracts and constituents exhibited differential modulatory effects on different CYPs. While none of the OS components showed significant inhibition on CYP2C9, eupatorin strongly and uncompetitively inhibited CYP2D6 activity with a K(i) value of 10.2μM. CYP3A4 appeared to be the most susceptible enzyme to OS inhibitory effects. It was moderately inhibited by OS dichloromethane and petroleum ether extract with mixed-type and noncompetitive inhibitions (K(i)=93.7 and 44.9μg/mL), respectively. Correlation study indicated that the inhibition was accounted for by the presence of eupatorin in the extracts. When IC(50) values of these extracts were expressed in volume per dose unit to reflect inhibitory effect at recommended human doses from commercially available products, moderate inhibition was also observed. In addition, CYP3A4 was strongly and noncompetitively inhibited by eupatorin alone, with a K(i) value of 9.3μM. These findings suggest that co-administration of OS products, especially those with high eupatorin content, with conventional drugs may have the potential to cause drug-herb interactions involving inhibition of major CYP enzymes.
  17. Alshagga MA, Alshawsh MA, Seyedan A, Alsalahi A, Pan Y, Mohankumar SK, et al.
    Ann Nutr Metab, 2016;69(3-4):200-211.
    PMID: 27871070 DOI: 10.1159/000452895
    BACKGROUND: Khat (Catha edulis) is a plant that is deeply rooted in the cultural life of East African and Southwestern Arabian populations. Prevalent traditional beliefs about khat are that the plant has an effect on appetite and body weight.

    SUMMARY: This review assesses the accumulated evidences on the mutual influence of monoamines, hormones and neuropeptides that are linked to obesity. A few anti-obesity drugs that exert their mechanisms of action through monoamines are briefly discussed to support the notion of monoamines being a critical target of drug discovery for new anti-obesity drugs. Subsequently, the review provides a comprehensive overview of central dopamine and serotonin changes that are associated with the use of khat or its alkaloids. Then, all the studies on khat that describe physical, biochemical and hormonal changes are summarised and discussed in depth.

    CONCLUSION: The reviewed studies provide relatively acceptable evidence that different khat extracts or cathinone produces changes in terms of weight, fat mass, appetite, lipid biochemistry and hormonal levels. These changes are more pronounced at higher doses and long durations of intervention. The most suggested mechanism of these changes is the central action that produces changes in the physiology of dopamine and serotonin. Nonetheless, there are a number of variations in the study design, including species, doses and durations of intervention, which makes it difficult to arrive at a final conclusion about khat regarding obesity, and further studies are necessary in the future to overcome these limitations.

  18. Lim SYM, Binti Azidin AR, Ung YT, Al-Shagga M, Alshawsh MA, Mohamed Z, et al.
    Eur J Drug Metab Pharmacokinet, 2019 Jun;44(3):423-431.
    PMID: 30306496 DOI: 10.1007/s13318-018-0518-2
    BACKGROUND AND OBJECTIVE: A significant number of people worldwide consume khat on daily basis. Long term of khat chewing has shown negative impact on several organ systems. It is likely that these people are co-administered khat preparations and conventional medication, which may lead to khat-drug interactions. This study aimed to reveal the inhibitory potencies of khat ethanol extract (KEE) and its major active ingredient (cathinone) on human cytochrome P450 (CYP) 2C9, CYP2D6, and CYP3A4 enzymes activities, which are collectively responsible for metabolizing 70-80% clinically used drugs.

    METHODS: In vitro fluorescence-based enzyme assays were developed and the CYP enzyme activities were quantified in the presence and absence of KEE and cathinone employing Vivid® CYP450 Screening Kits.

    RESULTS: KEE inhibited human CYP2C9, CYP2D6, and CYP3A4 enzyme activities with IC50 of 42, 62, and 18 μg/ml. On the other hand, cathinone showed negligible inhibitory effect on these CYPs. Further experiments with KEE revealed that KEE inhibited CYP2C9 via non-competitive or mixed mode with Ki of 14.7 μg/ml, CYP2D6 through competitive or mixed mode with Ki of 17.6 μg/ml, CYP3A4 by mixed inhibition mode with Ki of 12.1 μg/ml.

    CONCLUSION: Khat-drug interactions are possible due to administration of clinical drugs metabolized by CYP2C9/CYP2D6/CYP3A4 together with khat chewing. Further in vivo studies are required to confirm our findings and identify the causative constituents of these inhibitory effects.

  19. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
  20. Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, et al.
    Nat Ecol Evol, 2023 Nov;7(11):1914-1929.
    PMID: 37652999 DOI: 10.1038/s41559-023-02185-8
    The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links